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A fully integrated wearable ultrasound 
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Recent advances in wearable ultrasound technologies have demonstrated 
the potential for hands-free data acquisition, but technical barriers 
remain as these probes require wire connections, can lose track of moving 
targets and create data-interpretation challenges. Here we report a fully 
integrated autonomous wearable ultrasonic-system-on-patch (USoP). 
A miniaturized flexible control circuit is designed to interface with an 
ultrasound transducer array for signal pre-conditioning and wireless data 
communication. Machine learning is used to track moving tissue targets 
and assist the data interpretation. We demonstrate that the USoP allows 
continuous tracking of physiological signals from tissues as deep as 164 mm. 
On mobile subjects, the USoP can continuously monitor physiological 
signals, including central blood pressure, heart rate and cardiac output, for 
as long as 12 h. This result enables continuous autonomous surveillance of 
deep tissue signals toward the internet-of-medical-things.

With decades of development in probe fabrication1,2, circuitry design3 
and algorithm optimization4,5, medical ultrasonography can qualita-
tively and quantitatively acquire a broad range of physiological infor-
mation from the human body6,7, including anatomical structures8, 
tissue motion9, mechanical properties10 and hemodynamics11. Com-
pared with other medical imaging methods12, such as X-ray computed 

tomography13 and magnetic resonance imaging14, ultrasonography 
is safer, less expensive and more versatile. However, the accessibility 
and accuracy of ultrasonography face several technical challenges. 
First, common ultrasound probes are bulky and wired to large con-
trol systems, which limits their usage to centralized facilities. Second, 
those probes need manual placement and maneuvering and require 
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achieve a depth of ~78 mm with an axial resolution of ~330 μm for 
targeting major arteries (for example, aorta, carotid and femoral 
arteries). The 6-MHz transducers achieve a depth of ~9 mm and an 
axial resolution of ~230 μm for targeting smaller peripheral arteries 
(for example, radial and brachial arteries) (Extended Data Fig. 1). To 
achieve the desired beam profiles, we customize three probe layouts: 
disc, linear array and two-dimensional array, for penetrative, wide and 
narrow beam, respectively (Supplementary Fig. 6 and Supplementary 
Discussion 1). For electrical connection, we use anisotropic conductive 
films (ACFs) with easy attachment and detachment for repetitive use 
(Supplementary Fig. 7).

The control electronics are designed as a flexible printed circuit 
board (fPCB) (Supplementary Fig. 8 and Supplementary Table 2)  
for ultrasonic sensing and wireless communication. The circuitry 
consists of an analog front-end (AFE) and a data acquisition module 
(DAQ module) (Fig. 1b and Supplementary Fig. 9). The AFE achieves 
ultrasonic sensing through coordinated sequence control of multiple 
components (Extended Data Fig. 2 and Supplementary Discussion 2).  
First, the sequencer initiates sensing by sending trigger signals to 
the pulse generator and multiplexer. Then, the pulse generator reads 
the trigger signals and outputs high-voltage impulses to activate the 
ultrasound transducers. Meanwhile, the multiplexer drives the arrayed 
transducers to generate ultrasound and receive echoes. Finally, the 
echoes are collected by the transmit/receive switch, and then ampli-
fied and filtered by the receiver circuit. After the AFE completes the 
ultrasonic sensing process, the analog echoes are relayed to the DAQ 
module. The microcontroller unit samples the echoes with a built-in 
analog-to-digital converter, and then the Wi-Fi module wirelessly 
transmits the digitalized echoes to a terminal device (for example, a 
computer or a smartphone), where an online machine learning algo-
rithm and an application program can process and display the signals 
autonomously (Fig. 1c).

The AFE and the DAQ modules are interconnected by serpentine 
wires that allow for folding to minimize their footprint (Supplemen-
tary Fig. 10). An elastomeric encapsulation mitigates strain concen-
trations and protects the circuit from irreversible deformations 
(Supplementary Figs. 11 and 12 and Methods). The fully integrated 
system can be bent, stretched and twisted (Extended Data Fig. 3) 
and can be conformally laminated on the human body (Fig. 1a and 
Extended Data Fig. 4).

The ultrasonic probes have MHz-level bandwidth, substantially 
higher than other common sensors25 (Supplementary Fig. 13). There-
fore, achieving high sensing bandwidths and sampling rates is critical 
for the circuitry design. In this work, the DAQ module samples the signal 
12 million times per second corresponding to a sensing bandwidth 
of 6 MHz. The Wi-Fi module can transmit such wide-band signals at 
a distance of ~10 m and a speed of 3.4 Mbps with zero data loss (Sup-
plementary Fig. 14)26. The USoP system has a power consumption of 
~614 mW. A standard 3.7-V commercial lithium-polymer battery can 
enable continuous operation for up to 12 h (Supplementary Fig. 15).

The USoP can perform tissue sensing in multiple modalities, 
including amplitude mode (A-mode), brightness mode (B-mode) and 
motion mode (M-mode), to reveal the tissue structures and interface 
movements27 (Supplementary Fig. 16, Supplementary Discussion 3,  
Fig. 1d and Supplementary Video 1). We characterized the elevational 
and lateral resolutions of these sensing modalities. In A-mode and 
M-mode, the elevational and lateral resolutions show a degrading trend 
when the sensing depth increases (Supplementary Fig. 17 and Supple-
mentary Discussion 3). In B-mode, the elevational resolution can be 
defined by the transmission beam pattern, while the lateral resolution 
can be determined directly from image reconstruction (Supplementary 
Fig. 16 and Supplementary Discussion 3). When the probes conform to 
skin surfaces within certain bending radius thresholds, the soft probes 
offer stability in sensing. For A-mode and M-mode, the resolutions can 
be maintained with an array bending radius >6 mm (Supplementary 

the subjects to remain motionless, introducing operator dependency. 
Third, the interpretation of sonographic data requires medical profes-
sionals with specialized training and is labor-intensive and error-prone.

Recent advances in point-of-care ultrasound systems15 have sub-
stantially reduced the device size (Supplementary Fig. 1 and Supple-
mentary Table 1). However, they either need manual operations3 or 
require bulky rigid circuits16, because ultrasound hardware typically 
requires high power and high bandwidth. The use of bulky rigid probes 
and circuits creates difficulties to cover a large area and conform to 
highly curved body surfaces. Emerging wearable ultrasonic probes 
leveraging soft structural designs can naturally conform to the skin 
and acquire deep tissue signals in a hands-free manner17–19. Alterna-
tively, integrating rigid ultrasound chips with soft adhesive materials 
can achieve a reliable interface on the human skin20. However, these 
wearable probes all require cumbersome cables for power and data 
transmission, which substantially limits the subjects’ mobility, mak-
ing surveillance challenging during dynamic tests or daily activities. 
Developing a fully integrated ultrasonic probe with soft front-end 
circuits has yet to be demonstrated21,22. Additionally, current wear-
able ultrasound technologies can lose track of a target tissue dur-
ing subject motion, because the device on the skin surface shifts its 
position relative to deep tissues. Thus, they require frequent manual 
repositioning and only allow point-in-time examinations3,23. Moreo-
ver, with the large amount of data generated from continuous surveil-
lance, the front-end circuits and back-end processing units would be 
overwhelmed. Therefore, a critical milestone in the development of 
wearable ultrasound technology is to realize a fully integrated wireless 
system that can track a moving target and automate data acquisition 
and processing.

Here, we report a fully integrated autonomous ultrasonic- 
system-on-patch (USoP). The USoP integrates the ultrasonic probe and 
miniaturized wireless control electronics in a soft, wearable format, 
which overcomes the above-mentioned limitations. Multiple channels 
of deep tissue signals acquired from the subject are conditioned and 
preprocessed on-board, and then wirelessly transferred to a back-end 
receiver, where they are analyzed by a customized machine learning 
algorithm. When the USoP on the skin moves relative to the target tis-
sue, the algorithm classifies the data and selects the best channel in real 
time, yielding a continuous data stream from the target tissue. There-
fore, this technology allows continuous monitoring of deep tissue 
signals during human motion. The fully integrated autonomous USoP 
eliminates the operator dependency of conventional ultrasonography, 
standardizes the data-interpretation process and therefore expands 
the accessibility of this powerful diagnostic tool in both inpatient and 
outpatient settings.

Results
Design of the USoP
The USoP hardware consists of an ultrasound probe and control elec-
tronics which are fabricated in a miniaturized, soft format (Fig. 1a). 
The ultrasonic probe is made of piezoelectric transducers, backing 
materials, serpentine interconnects and contact pads, similar to our 
reported structures18,19,24. This soft probe design reduced noise cou-
pling, enhanced resolution, enabled gel-free acoustic coupling and 
ensured probe durability (Supplementary Figs. 2–5 and Supplemen-
tary Discussion 1). We design the probes with center frequencies from 
2 MHz to 6 MHz to achieve the desired bandwidth, axial resolution 
and penetration depth. We determine the bandwidth as the −3-dB 
frequency band of the pulse-echo response, axial resolution as the full 
width at half maximum of the pulse-echo response and penetration 
depth as the −3-dB attenuation point in tissues. All soft probes can 
achieve a relative bandwidth of ~50%, which is similar to a commercial 
probe (Extended Data Fig. 1). The 2-MHz transducers achieve a depth 
of ~164 mm with an axial resolution of ~600 μm for targeting visceral 
organs (for example, heart and diaphragm). The 4-MHz transducers 
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Fig. 18 and Supplementary Discussion 4). For B-mode, the image arti-
facts could be neglected when the bending radius of the array is >6 cm  
(Supplementary Fig. 19 and Supplementary Discussion 4).

Physiological signal recording and validation
In clinical practice, A-mode and B-mode are commonly used for 
temporary measurements, while M-mode is for monitoring signals 
continuously27. Additionally, M-mode is valuable for quantitatively 
characterizing tissue dynamics28–30. Therefore, in this work, we focus 
on the use of the USoP in M-mode. Natural physiological processes, 
such as circulation and respiration, can be manifested in the motion 
of tissue interfaces, such as myocardial contraction, arterial pulsation 
and diaphragmatic excursion. The USoP can quantify these interfacial 
motions from multiple sensing windows in the human body (Fig. 2a,  
Supplementary Figs. 20 and 21, Supplementary Discussion 5 and  
Supplementary Table 3).

From myocardial contraction, the diameter change of the left ven-
tricle during cardiac cycles can be recorded, and therefore fractional 
shortening can be derived as a measure of left ventricular function 
(Fig. 2b, left)31. A comparison of measurements from the USoP and a 
commercial ultrasonic system shows a mean difference of ~1% (Fig. 2b, 
right, Supplementary Fig. 22 and Methods).

In arterial pulse waveforms, the pulse interval reflects the heart 
rate, and the pulse intensity can be correlated to blood pressure (Fig. 2c  
and Supplementary Discussion 6)18. We validated the USoP results 
against a clinical-grade tonometer, the noninvasive gold standard for 
pulse waveform recording32 (Methods). Bland–Altman analysis was 
performed to compare the waveform-derived heart rate and blood 
pressure from both devices (Fig. 2d). The 95% limits of agreement 
included >95% of differences between the results from the tonometer 
and USoP, showing measurement consistency between these two 
devices. Additionally, the time difference between myocardial con-
traction and arterial pulsations can be used to quantify the pulse wave 
velocity, which correlates to the arterial stiffness of specific arterial 
segments (Extended Data Fig. 5 and Supplementary Discussion 7). 
Comparing the results of the USoP with those of the tonometer sug-
gests a mean pulse transit time difference of <0.5 ms, which results in 
<4% error in pulse wave velocity recording, further demonstrating the 
accuracy of the USoP (Extended Data Fig. 5)33.

The USoP can also measure diaphragmatic excursion as a surro-
gate for changes in respiratory volume. The diaphragm depth recorded 
by the USoP is compared with the respiratory volume recorded by 
a spirometer (Fig. 2e, left, and Methods). With a linear regression 
model, the correlation coefficients between the diaphragmatic depth 
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Fig. 1 | Overview of the fully integrated USoP. a, A photograph of the 
encapsulated USoP laminated on the chest for measuring cardiac activity via 
the parasternal window. The inset shows a folded circuit. b, Design of the USoP, 
including a stretchable ultrasonic probe, a flexible control circuit and a battery. 
The ultrasonic probe consists of a piezoelectric transducer array, serpentine 
interconnects and an ACF (upper left). The exploded view of the circuit shows 
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filter, a pulse generator with a transmit controller (Tx ctrl) and a booster, and a 
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built-in analog-to-digital converter (ADC) and a Wi-Fi chip. The two modules are 
connected by serpentine electrodes, which allow the entire circuit to be folded 
for a smaller footprint. The circuit is powered by a commercial lithium-polymer 

battery. A smartphone application is designed to display the data stream from 
the USoP. From the ultrasonic data, M-mode images and physiological signals 
can be derived and displayed in real time. The smartphone can also communicate 
with a cloud server for further data analysis (lower right). c, Block diagram of 
the USoP showing the flow of analog impulse, analog echo and digital signals. 
The AFE performs pulse-echo sensing to acquire ultrasonic signals, and the DAQ 
module samples signals and wirelessly transmits the data to a terminal device for 
processing and display. d, B-mode imaging of the carotid artery (CA) and jugular 
vein ( JV), while the subject is performing the Valsalva maneuver to dilate the JV 
(left). M-mode imaging of the pulsation pattern of CA walls (right). HR, heart 
rate; BPM, beats per minute; DBP, diastolic blood pressure; SBP, systolic blood 
pressure.
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and respiratory volume under normal and forced breathing condi-
tions are 99.9% and 99.7%, respectively (Fig. 2e, right). Furthermore, 
these derived volumes can be used to characterize the respiratory 

performance and identify airway obstruction or lung capacity restric-
tion (Supplementary Fig. 23, Supplementary Discussion 8 and Sup-
plementary Table 4), which can potentially be used for screening 
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Fig. 2 | Monitoring and analysis of tissue interface motions using the USoP. 
a, Schematics and measurement results of seven representative dynamic tissue 
interfaces. b, Deriving physiological parameters from myocardial contraction. 
From the M-mode waveforms of the septum and left ventricular wall, the LVIDd 
and LVIDs can be used to derive the fractional shortening (left). Comparison of 
measurements between the USoP and a commercial ultrasound probe (right). 
The results are averaged from 10 independent measurements, and the error 
bars represent the standard deviation. c, Derivation of physiological parameters 
from the arterial pulse waveforms, including the heart rate and blood pressure. 
d, Bland–Altman plot showing measurement agreement between the USoP and 
a tonometer. Left: for the heart rate, a mean difference of 0.013 beats per minute 

(bpm) is observed, and 135 of 142 (95.1%) data points are within 95% limits of 
agreement defined by ±1.96 s.d. Right: for the blood pressure, a mean difference 
of 0.17 mmHg is observed, and 269 of 280 (96.1%) data points are within 95% 
limits of agreement defined by ±1.96 s.d. e, Derivation of expiratory volume from 
the diaphragmatic excursion. Simultaneous measurements of diaphragmatic 
excursion and respiratory volume show a similar pattern (left). The regression is 
on expiratory volume (V) with diaphragmatic depth (D) in normal breathing and 
forced breathing. Strong linear relationships, with correlation coefficients (CCs) 
close to 100%, can be found between the diaphragmatic excursion and expiratory 
volume in both breathing conditions (right).
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respiratory issues such as chronic obstructive pulmonary disease34 
and pulmonary fibrosis35.

Autonomous data acquisition and analysis by machine 
learning
We use the USoP with a 4-MHz 32-channel linear array probe to auton-
omously and continuously track the position of the carotid artery 
and sense its pulsations. The linear array has an acoustic aperture of 
~25.4 mm, which is sufficiently wide to accommodate the misalignment 
between the probe and the carotid artery36. Pulsation is visible in the 
M-mode images derived from the transducer channels directly above 
the carotid artery, while the M-mode images from the other adjacent 
channels show weaker or no pulsations (Fig. 3a). We train machine learn-
ing models to classify those M-mode images and identify whether sali-
ent pulsation patterns are present in the image (Supplementary Fig. 24).  
Specifically, we use a VGG13 model because it outperforms other com-
monly used models for medical image classification in terms of preci-
sion, recall and accuracy. This model can even handle compromised 
ultrasound images and maintain the precision, recall and accuracy 
higher than 98.4% (Extended Data Fig. 6, Supplementary Discussion 9 
and Methods), which is more robust than conventional logistic models 
(Supplementary Fig. 25 and Supplementary Discussion 9). Based on 
the arterial wall patterns in the M-mode images, this model predicts 
probability scores for each of the 32 channels and, therefore, gener-
ates a probability profile of the position of the artery (Supplementary 
Discussion 10). The channel with the highest probability is determined 
as the center of the artery (Supplementary Fig. 26), and its channel data 
are used for generating the pulse waveforms (Fig. 3b).

We record human head motion using inertia measurement units 
(Supplementary Fig. 27 and Methods) and simultaneously image the 
carotid artery to quantify its displacement. The head can yaw at a larger 
angle than it can roll and pitch, and yawing generates the largest arterial 
displacement (~19 mm) (Supplementary Fig. 28). The USoP generates 
M-mode images from all channels with head yawing. The VGG13 model 
identifies the M-mode images containing arterial pulsations, deter-
mines a moving sub-aperture to follow the carotid artery (Supplemen-
tary Fig. 29), selects the optimal channel from the probability profile 
(Supplementary Video 2) and generates continuous pulse waveforms 
autonomously (Fig. 3c). In contrast, without the model, a fixed chan-
nel with head yawing loses track of the pulsation waveform once the 
artery is outside its sensing aperture (Fig. 3c). The model prediction 
remains reliable at a head yawing rate <60° s−1 (Supplementary Fig. 30 
and Supplementary Discussion 11). At yawing rates beyond this limit, 
the pulse waveform becomes distorted but is quickly restored when 
motion stops (Supplementary Fig. 31).

Machine learning algorithms may encounter generalization prob-
lems when tested on images outside the training pool. For example, 
images from a new subject may have distinct brightness, contrast 
and arterial wall patterns, which would result in different luminosity 
distributions (Fig. 3d). We enhanced the generalization of the VGG13 
model by using domain adaptation with a minimal entropy correla-
tion alignment model37 (Fig. 3e and Supplementary Discussion 12) to 
transfer the machine learning network to new image datasets without 
additional labeling. The use of domain adaptation allows the model to 
generalize to different subjects. A t-distributed stochastic neighbor 
embedding visualization of the subject distributions shows that images 
from different subjects are unified after domain adaptation is applied 
(Supplementary Fig. 32 and Methods). Model generalizability is demon-
strated through cross-validation among ten subjects (Supplementary 
Table 5). We train the classification model on each subject and then 
validate it on the nine other subjects. Without domain adaptation,  
the model only has an average accuracy of 63.23% on new subjects  
(Fig. 3f, left). After domain adaptation, this accuracy increases to 
96.13% (Fig. 3f, right). We also investigate the minimum data required 
to be collected from a new subject for successful domain adaptation.  

The results show that only 32 unlabeled images from a new subject 
suffice to achieve >90% classification accuracy (Supplementary Fig. 33  
and Supplementary Discussion 13).

Continuous monitoring during exercise
The USoP can continuously track multiple deep tissue signals during 
human motion. To test its performance, we used it on a participant 
during aerobic exercise, when the participant performed 30 min con-
tinuous cycling followed by 30 min rest. We record the carotid blood 
pressure waveform while the participant moves freely (Fig. 4a and 
Supplementary Video 3). Similar measurements were also made dur-
ing anaerobic exercise, when the participant performed high-intensity 
interval training (HIIT) comprising six 1-min training sessions, sepa-
rated by six 1-min periods of resting (Extended Data Fig. 7).

Upon the onset of exercising, the substantial increase in the blood 
pressure and heart rate suggests a boost in circulating blood, also 
known as the stressed volume (Fig. 4b,c)38. During both cycling and 
HIIT, the systolic pressure increases more than the diastolic pressure, 
regulated by increased cardiac output and decreased vascular resist-
ance (Supplementary Discussion 14). The heart rate increases mono-
tonically during both types of exercise and decreases during resting, 
as anticipated39. As cycling progresses, the blood pressure gradually 
stabilizes at a relatively elevated level, resulting in narrow distributions 
of both systolic and diastolic pressures in the histogram (Fig. 4d, top). 
These results imply that the systemic vascular resistance decreases to a 
physiologically determined steady state to support prolonged muscle 
activity40. This is in stark contrast to HIIT, during which blood pressure 
fluctuates, resulting in wider distributions of both diastolic and systolic 
blood pressures (Fig. 4d, bottom). In both cycling and HIIT, resting 
allows blood pressure to gradually decrease toward the baseline.

We derive the vascular responses to exercise by calculating the 
augmentation index (AIx)41,42 (Supplementary Figs. 34 and 35 and Sup-
plementary Discussion 15). In both cycling and HIIT, the AIx increases 
with exercise and recovers with resting; when the exercise is sufficiently 
long, as in the case of cycling, the AIx stabilizes (Fig. 4e). The increase 
in the AIx during exercise may have two causes: vessel stiffening43 and 
vasodilation42,44. We measure the change in the arterial stiffness index 
before, during and after exercise (Supplementary Fig. 36 and Methods). 
The results suggest a negligible change (<0.34%) in the stiffness index45. 
Additionally, such a negligible change in the stiffness index leads to 
a central blood pressure error <1.58 mmHg after calibration, which 
proves the reliability of the blood pressure recordings during exercise 
(Supplementary Fig. 36 and Supplementary Discussion 16). Therefore, 
the increase in the AIx is primarily driven by vasodilation rather than 
changes in arterial stiffness. The vasodilation takes place mainly in the 
skeletal muscle involved in the exercise to support an elevated demand 
for oxygen and thus blood flow42,46; activating larger muscle groups 
results in greater vasodilation and increased blood flow, and thus a 
higher AIx (Supplementary Fig. 37).

We estimate the stroke volume from the pressure waveforms using 
a pulse contour method (Supplementary Fig. 38 and Supplementary 
Discussion 17)47. The cardiac output is then calculated as the product of 
stroke volume and heart rate. Similar patterns in the stroke volume and 
heart rate are observed in both cycling and HIIT (Fig. 4f). The measured 
cardiac output increases as the exercise intensifies, and the heart rate 
increases together with the cardiac output. Initially, the stroke vol-
ume increases before plateauing as end-systolic volume approaches 
the mechanical limits of the heart48 and the increase of end-diastolic 
volume begins to be limited by the shorter filling times at higher heart 
rates49. In the high cardiac output region (for example, >15 l min−1), the 
stroke volume plateaus, and the increase in cardiac output is mainly 
attributed to the increase in heart rate50. Compared with cycling, HIIT 
produces a greater increase in stroke volume and a higher maximum 
cardiac output, indicating that HIIT may be a more effective training 
modality for enhancing cardiac functions51,52.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | March 2024 | 448–457 453

Article https://doi.org/10.1038/s41587-023-01800-0

0 50 100 150 200 250

Pi
xe

l n
um

be
r

Luminosity

Channel number
1 32

0° 40° 80°–40°–80°
0

1
1 32 1 32 1 32 1 32

Score

Channel number Channel number Channel number Channel number

0 2 4 6 8 10 12 14 16 18

40

120

200

280

360

C
ar

ot
id

 p
ul

se
(µ

m
)

Ch no. 5 Ch no. 8 Ch no. 16 Ch no. 23 Ch no. 29

Ch no. 16

Time (s)

Yawing Yawing Yawing Yawing–80° –40° 0° 40° 80°

c

No. 1

No. 2
240 250

102

103

104

105

102

103

104

105

6k

36k

Bright pixels

32 channel images

CA
channels
(14–20)

CA probability
profile

nCA
channels
(1–13, 21–32)

Classification

Pulse wave
generation

0 320

1

Sc
or

e

Channel

a b

CA images nCA imagenCA image

Tissue

Artery

Linear array

d e f

Conv.
layer

Conv.
layer

FC layer FC layer

Classification
loss

Geodesic
covariance

distance loss

Training images
(training)

New images
(new)

Training subject
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

100%

50%

Va
lid

at
io

n 
su

bj
ec

t
Training subject

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Va
lid

at
io

n 
su

bj
ec

t

0 2 4 6 8 10 12 14 16 18

40

120

200

280

360

C
ar

ot
id

 p
ul

se
(µ

m
)

Fig. 3 | Autonomous and continuous blood pressure recording in a moving 
subject. a, Left: schematic cross-sectional view of a soft 4-MHz linear array 
sensing the carotid artery. Right: representative M-mode images of  
channels with beam penetrating or not penetrating the carotid artery,  
classified as carotid artery (CA) or noncarotid artery (nCA) images, respectively. 
b, Flow diagram showing the process of autonomous CA detection and pulse 
waveform generation. c, Recording in a moving subject using the USoP with 
and without an autonomous algorithm. The algorithm can reliably track the CA 
position with head yawing from −80° to +80°, corresponding to a ~19-mm CA 
displacement. Prediction scores of different transducer channels for tracking 
the CA at each yawing position and corresponding B-mode images collected by 
a commercial ultrasound machine (top). By actively selecting the best channel 
to follow the CA motion (for example, no. 5, no. 8, no. 16, no. 23 and no. 29), 
continuous pulse waveforms can be recorded (middle). In contrast, without the 
auto-selection algorithm, a fixed channel (for example, no. 16) results in signal 
loss during motion (bottom). d, Two representative M-mode images recorded 

from the training subject (no. 1) and a new subject (no. 2), showing different 
image patterns (left). The histograms of the two CA images show a substantial 
difference in luminosity distribution (right). Inset, subject no. 2 has ~6 times  
more white pixels than subject no. 1, indicating thicker arterial walls.  
e, Schematic diagram showing the workflow of the minimal entropy correlation 
alignment model, consisting of two encoders with five convolutional (Conv.) 
layers and three fully connected (FC) layers. The classification loss and geodesic 
covariance distance loss are used to align features extracted from the training 
image set (source domain) and those from a new image set (target domain).  
f, Model generalizability validation on 10 subjects. The classification model is 
trained on each subject and validated on the remaining subjects. Without domain 
adaptation, the matrix plot shows an average classification accuracy of only 
63.23% on new subjects (left). After domain adaptation, the average classification 
accuracy is boosted to 96.13%, showing the improved generalization of the 
classification model (right).
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Discussion
While most existing wearable devices capture signals on or near the 
skin surface53–56, such signals are often manifestations of physiological 
processes in deep tissues25. Therefore, in many clinical applications, 

it is critical to monitor deep tissue signals directly. More importantly, 
deep tissue physiology is constantly changing. To identify potential 
risk factors for a disease, capture its early onset, or evaluate its pro-
gression, obtaining longitudinal data over the course of days, weeks 
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or even months is key. This calls for a tool that enables long-term deep 
tissue surveillance, processes the data stream in real time and remains 
accurate during human motion.

Medical ultrasound is one of the most widely used methods for 
deep tissue sensing, but due to the complex equipment and the require-
ment for an operator, traditional ultrasound exams offer point-in-time 
measurements only. In fact, a critical barrier that prevents traditional 
ultrasound from long-term use is its operator dependency57,58. Even with 
standardized exam procedures, results reported using conventional 
ultrasonography strongly depend on operator skill. When mishandled, 
it may generate compromised or even erroneous results (Supplemen-
tary Fig. 39 and Supplementary Discussion 18).

Recent advances in wearable ultrasonography have shown the 
promise of capturing deep tissue signals over the long term. Soft, 
wearable ultrasonic probes17–19,24, as well as rigid ultrasound chips inte-
grated with soft adhesives20, have demonstrated hands-free ultrasound 
signal acquisition. However, removing the requirement to handhold 
the probe is only the initial step toward continuous operation, and 
three further technical barriers remain. First, these probes have to be 
wired to a central processing station, which largely limits the wearing 
subject’s mobility. Second, existing wearable ultrasound devices face 
challenges with measurement continuity and reliability in moving 
subjects, because the device on the skin shifts in position relative to 
the target tissue. Third, wearables generate new challenges for manual 
data processing because any clinicians will be overwhelmed by the 
continuous data stream.

The fully integrated USoP addresses these three barriers and 
makes continuous surveillance of deep tissue signals possible. First, 
the USoP eliminates wire connections by connecting the device and the 
back-end processing system wirelessly, which allows for large-range 
subject mobility. Second, the USoP uses machine learning-based algo-
rithms to automate the data acquisition and channel selection in real 
time. To our knowledge, no previously reported wearable device can 
autonomously track a moving target. Third, deep learning-enabled 
data post-processing relieves the human burden and enables potential 
scale-up. Together, these innovations open up many new possibilities. 
For example, patients can be monitored as they conduct their natu-
ral daily activities, which can provide rich information that is more 
clinically relevant59. Responses to high-risk activities such as during 
an intense workout can be captured for more rigorous diagnostics60,61. 
Continuous monitoring over days or weeks of the dynamic changes of 
the cardiovascular system in response to stressors can benefit a broad 
range of populations, from athletes who need training optimization, 
to cardiac rehabilitation patients who require safety measures, and to 
general high-risk populations for cardiovascular risk stratification and 
prediction (Supplementary Discussion 19).

Future developments of this technology can be focused on the 
following areas. First, the soft ultrasonic probes face challenges of 

unknown transducer locations when conformed to dynamic and curvi-
linear skin surfaces. A-mode and M-mode using single transducers with-
out beamforming are not affected, but unknown transducer locations 
cause phase aberration and compromised beamforming for B-mode 
imaging. Potential solutions include applying additional shape sensors 
to map the transducer locations in real time62, or developing iterative 
contrast optimization algorithms to compensate the phase distortion 
of a deformed array63. Second, the long-term wearability of the USoP 
should be further improved. Incorporating highly integrated chips 
with multilayered soft circuitry64 could further enhance the mechani-
cal compliance of the system. Combining wearable power-harvesting 
devices65 could extend the battery life of the USoP. Replacing silicone 
adhesives with more durable and permeable adhesives could help 
enhance skin integration under skin deformation and perspiration66. 
Third, the USoP can potentially be applied to other tissue targets, 
particularly in high-risk populations where continuous monitoring 
is critical (Supplementary Discussion 20). Fourth, the cloud com-
puting resources necessary for machine learning processing limit 
the accessibility in remote and undeveloped regions. On-board data 
analytics based on power–performance balance optimization and arti-
ficial intelligence-on-a-chip technology may be a possibility67. Finally, 
through strategically tuning the ultrasound controlling parameters 
such as activation frequency and pulse profile, this technology could 
enable more intriguing wearable diagnostic and therapeutic applica-
tions, including anatomic imaging20,24, functional imaging19,68,69 and 
ultrasound stimulation70.
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Methods
Materials for device fabrication
Silicone elastomer (Ecoflex-0030) was bought from Smooth-On as the 
encapsulation material of the device. Ultrasonic transducers (PZT-5H) 
were purchased from DeL Piezo Specialties. ACF cables were purchased 
from Elform. Double-sided fluid-resistant medical silicone adhesives 
(2477P) were purchased from 3M.

Finite element analyses of fPCB deformations
Commercial software ANSYS 2022 R1 was used to predict the bending 
deformation of the fPCB and the elastic stretchability of the elastomer 
package. Twenty-node 3D solid elements (SOLID 186) and implicit static 
analyses were adopted to ensure the convergence of the simulations. 
Bonded definitions were exploited between contact regions without 
friction. An ideal elastic–plastic constitutive relationship was used 
to define the copper layer, where the von-Mises stress reached the 
yield strength at 357 MPa across any width (corresponding to the Cu 
yield strain of 30% (ref. 71)). When bending the fPCB, the maximum 
principal strain of 0.57% occurred on the circuit components (Supple-
mentary Fig. 12). When stretching the elastomer package, we assumed 
the human skin elastically yielded at <30% strain. Linear elastic proper-
ties were used to model the human skin, Ecoflex and mold for circuit 
components, where the elastic modulus E and Poisson’s ratio v are 
ESkin = 400 kPa and vSkin = 0.48; EEcoflex = 69 kPa and vEcoflex = 0.49; and 
Emold = 23 GPa and vMold = 0.3 (refs. 64,72–74).

Human test protocols and specifications
The bio-interface excursions, blood pressure waveforms and respira-
tory volumes were measured on healthy participants. All human tests 
were approved by the University of California, San Diego, Institutional 
Review Board protocol 803942. The participants all gave voluntary 
consent for ultrasonic measurements.

Ultrasonic test with clinical systems
Two clinical ultrasonic probes were used to collect images and data for 
benchmarking the USoP in this work—Verasonics Vantage 64 and But-
terfly IQ. On the Verasonics Vantage 64 system, a phased array probe 
P4-2v was used to measure myocardial contraction and fractional short-
ening based on the left ventricular internal diameter at end-diastole 
(LVIDd) and left ventricular internal diameter at end-systole (LVIDs). 
Fractional shortening was calculated by:

Fractional shortening = LVIDd − LVIDs
LVIDd

× 100%

On the Butterfly IQ system, a capacitive-micromachined ultra-
sound transducer probe was used for collecting B-mode images from 
radial, brachial, carotid and femoral arteries, as well as the abdominal 
aorta, heart and diaphragm, to indicate the position and movement 
of these tissue interfaces.

Carotid artery blood pressure measurement using tonometer
We used an Food and Drug Administration-approved tonometer 
(SphygmoCor) to directly record the carotid blood pressure wave-
forms. Based on the pressure waveforms, heart rate and the AIx were 
calculated by the software SphygmoCor CvMS V9; heart rate was cal-
culated as the reciprocal of beat-to-beat intervals, and the AIx was 
calculated as described in Supplementary Fig. 35. During the validation 
test, the blood pressure waveforms were measured intermittently while 
the subject performed multiple cycling sessions to stimulate changes 
in blood pressure. The tonometer was handheld adjacent to the USoP 
to measure the same common carotid artery simultaneously while the 
subject was sitting still. These measurements were repeated to record 
~140 cycles of arterial pulsation on a healthy participant for Bland–Alt-
man analysis of blood pressure, heart rate and AIx.

Spirometer test of respiratory function
The respiratory function was tested with a clinical spirometer (SP-250, 
Schiller) on a healthy participant in a static sitting position. The spirom-
eter recorded the volume and flow speed of the participant during 
inhalation/exhalation. During the test, the participant wore a nose clip 
to avoid air leakage and followed the testers’ instructions to breathe 
in the desired patterns (that is, deep or quick exhale). The spirometer 
data were sent to the computer, where they were processed and then 
returned to a display to show the test results. The expiratory volumes 
were analyzed and plotted with MATLAB R2019b and Origin 2017.

Machine learning model training and validation
Classification models, including MobileNetV2, ResNet, VGG11 and 
VGG13, were trained on the same dataset to compare their perfor-
mance. The training dataset was collected from a healthy participant 
and contained 3,021 M-mode images labeled as ‘carotid artery image’ 
and 2,427 images labeled as ‘noncarotid artery image’. The training 
process was solely image-based using the labeled M-mode images. 
During performance validation, the unlabeled M-mode images were 
used as input, and the classification models output the probability 
of the image containing carotid artery pulses. The machine learning 
algorithms were designed with the integrated development environ-
ment PyCharm Community Edition 2022.2.

Head motion recording
We measured the head motion using a pair of inertia measurement 
units (LSM6DS3) mounted on the head and torso (Supplementary 
Fig. 27). The actual head rotation could be recorded by calculating the 
difference between the head unit and the torso unit.

Visualizing the domain distribution with a t-distributed 
stochastic neighbor embedding algorithm
We used t-distributed stochastic neighbor embedding, a dimension 
reduction algorithm75, to visualize the distribution of the M-mode 
image dataset. It embedded high-dimensional data into a lower dimen-
sion data (two-dimensional in this work) and created clusters among 
similar data points. Before domain adaptation, because there were 
domains leading to two groups of similar data points, t-distributed 
stochastic neighbor embedding created two clusters. After the domain 
adaptation, the difference between two domains was eliminated, and 
thus t-distributed stochastic neighbor embedding could only create 
one cluster.

Arterial stiffness index measurement
The arterial stiffness index β could be calculated using the systolic/
diastolic pressure and corresponding arterial diameters76:

β = Dd ln(ps/pd)
Ds − Dd

where ps and pd are the systolic and diastolic pressures, respectively, 
measured by using a blood pressure cuff, and Ds and Dd are the cor-
responding systolic and diastolic arterial diameters measured by the 
USoP. The measurement results of β in Supplementary Fig. 36 were 
collected on a healthy subject (the same person tested in Fig. 4).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data and material resources supporting the findings of this study 
are available within the article and supplementary materials. The raw 
data can be found in a publicly accessible repository77 (https://doi.org/ 
10.6084/m9.figshare.22631047.v4).
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Code availability
The codes used in M-mode image classification and domain adaptation 
can be found in a publicly available repository (https://github.com/
JackLin95/Autonomous-Ultrasound-CodeData.git).
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Extended Data Fig. 1 | Characterizing bandwidth, axial resolution, and 
penetration of the stretchable ultrasonic probes. a, Pulse-echo response and 
bandwidth of the probes with three frequencies. The full width at half maximum 
(FWHM) is labeled to show the axial resolution of each probe. The 2 MHz, 4 MHz 
and 6 MHz can achieve 604 μm, 333 μm and 229 μm resolution, respectively. 
Three probes could achieve a relative bandwidth of ~50% to their center 
frequencies at -3 dB. b, The pulse-echo response of a commercial ultrasound 
probe with a center frequency of 3 MHz, which could achieve a relative 
bandwidth of 42.3%. c, Tissue targets to be sensed by the stretchable ultrasonic 

probe in this work. The 2 MHz probe is used for deep organ (for example, heart 
and diaphragm) sensing. The 4 MHz probe is used for deep major artery (for 
example, carotid, femoral, and abdominal aorta) sensing. The 6 MHz probe is 
used for shallow peripheral artery (for example, radial and brachial) sensing. d, 
Transmission beam intensities as a function of penetration depth in tissues of the 
probes with different frequencies. The intensity decay was measured in water, 
and then converted into tissue decay with an attenuation factor of -0.3 dB/cm/
MHz. Based on the penetration threshold of a -3 dB drop in intensity, the 2 MHz, 
4 MHz and 6 MHz can penetrate 164.0 mm, 77.7 mm and 9.2 mm, respectively.
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Extended Data Fig. 2 | Schematics and control sequence of ultrasonic sensing. 
a, Block diagram and signal transmission lines between the functional modules. 
The control circuit includes two parts: the AFE and the wireless DAQ module. The 
AFE consists of a multiplexer (Mux), a transmit/receive switch (T/R SW), a 
receiver, a sequencer, and a pulse generator. The DAQ module consists of a 
microcontroller (MCU) with an on-chip analog-to-digital convertor (ADC), and a 
Wi-Fi transmitter. The dashed lines are for digital signal transmission and the 
solid lines are for analog signal transmission. b, Simulated control sequence for 

multiplexing and pulse-echo sensing, which shows the time sequence of the 
receive (Rx) enable, trigger, high-voltage (HV) pulse, clock (CLK), reset (RES), 
digital input (Din), and latch enable (LE) signals. c, Signals acquired by an 
oscilloscope showing the control sequence of the pulse-echo sensing and 
transducer multiplexing. d, Signals acquired by an oscilloscope showing the 
input sequence to the shift register for multiplexing and driving the transducer 
elements. All figure panels share the same color encoding scheme.
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Extended Data Fig. 3 | Deformation of the packaged USoP. a, 90° bending, b, 90° twisting, and c, 20% uniaxial stretching of the packaged USoP. d, A zoom-in view of 
the stretched interconnects.
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Extended Data Fig. 4 | Skin integration of the conformal USoP device.  
The soft patch could conform to multiple curved body parts, including  
a, forearm, b, brachium, c, neck, d, lower chest, and e, abdomen. f-g, Skin 

integration of the device before and after exercise. The USoP could maintain 
robust adhesion to the skin after the subject performs intensive exercise  
and sweats.
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Extended Data Fig. 5 | Pulse wave velocity (PWV) measurements. a, Schematic 
illustration of the pulse wave propagation paths in this study. Five paths were 
investigated, including the heart to the abdominal aorta (H-Ao), the heart to 
the carotid artery (H-CA), the heart to the femoral artery (H-FA), the heart to 
the brachial artery (H-BA), and the brachial artery to the radial artery (BA-RA). 
b, Pulse waveforms collected by synchronized USoP pairs. The pulse transit 
time (PTT) was defined as the delay between the diastolic feet of the ventricular 
contraction and arterial pulses. c, The average PTT values by the USoP and the 
tonometer, showing consistency for both H-BA and BA-RA. Ten consecutive 

pulses were recorded to calculate average PTT values. The error bars represent 
the measurement standard deviations. d, PWV calculated across five arterial 
segments using the USoP. e, PWV mapping under normal conditions and 
cold pressor test. The average PWV along each path was calculated from five 
independent measurements. The error bars indicate the standard deviations 
of the measured values. The PWV increases from heart-proximal to heart-distal 
branches. There is a regional increase of PWV in H-BA and BA-RA segments owing 
to cold-induced vasoconstriction.
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Extended Data Fig. 6 | The validation metrics of four models on ideal and 
compromised image datasets. a, The images used for validation including 
ideal carotid artery images and compromised images (for example, noise 
coupled images, artery shifting images and artery missing images). b, The 
receiver operating characteristic curves validated on 460 ideal images, 
suggesting the best model VGG13 has an area under the curve value of 100%. 

c, The precision, recall and accuracy validated on ideal images. d, The receiver 
operating characteristic curves validated on 460 images with a mix of ideal and 
compromised images, suggesting the best model VGG13 has an area under the 
curve value of 99.4%. e, The precision, recall and accuracy validated on mixed 
ideal and compromised images.
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Extended Data Fig. 7 | Continuous monitoring during high-intensity 
interval training (HIIT). a, Photographs showing the participant performing 
HIIT. Six training sessions, including (i) touch shoulder push-ups, (ii) cycling 
Russian twist, (iii) push-up rotations, (iv) burpees, (v) side kick through and 
(vi) hand-release push-ups. b, The head motions are recorded by the inertia 
measurement units, which show the rolling, yawing and pitching rates during 

the 12 min training and rest. The carotid blood pressure waveforms and heart 
rate are recorded simultaneously and continuously using the USoP. The systolic 
pressure increased ~25 mmHg between training sessions and rest sessions, while 
the diastolic pressure experienced less fluctuation. c, Zoomed-in view of the head 
motions, continuous blood pressure waveforms and heart rate recorded during 
the training sessions.
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Supplementary Discussion 1. Ultrasonic probe fabrication and layout designs 128 
 129 
1. Probe fabrication 130 
The ultrasonic probes were fabricated based on the multilayered microfabrication approach1,2. The 131 
arrayed transducers were made of 1-3 piezoelectric composites and backing layers to improve the 132 
axial resolution (Supplementary Fig. 3). We used the silicone elastomer with a modulus of 69 kPa 133 
as the probe-skin interface, which ensured intimate contact between the transducers and skin, 134 
therefore enable gel-free acoustic sensing1 (Supplementary Fig. 4). The gel-free probes showed 135 
high durability in tissue sensing over long-term. Our results suggested the sensor could survive 136 
repetitive use over six months and showed negligible performance degradation (Supplementary 137 
Fig. 5). 138 
 139 
For probe fabrication, we sandwiched the transducers with copper serpentine interconnects 140 
prepared by laser ablation and transfer printing1,3. The serpentine interconnects help achieve the 141 
stretchability of the transducer array1. Vertical interconnect accesses were added to connect the 142 
ground electrodes and signal electrodes in different layers. The entire structure was encapsulated 143 
by silicone elastomer (Supplementary Fig. 6a). 144 
 145 
2. Layout designs 146 
There were three probe layout designs, including a disc, a linear array, and a 2D array 147 
(Supplementary Fig. 6b-d). These layout designs were simulated to confirm their transmission 148 
characteristics, where distinct beam patterns and aperture coverages were illustrated 149 
(Supplementary Fig. 6e). 150 
 151 
For the disc, 112 piezoelectric transducers at 2 MHz were used. All of these transducers were 152 
arranged within a circular region and connected in parallel, functioning as a single transducer for 153 
high transmission intensity. Such a design resulted in a highly penetrative transmission beam 154 
(Supplementary Fig. 6e left), which was suitable for sensing deep organs (e.g., heart and 155 
diaphragm).  156 
 157 
For the linear array, 256 transducers at 4 MHz were arranged with a bi-axial pitch of 0.8 mm. 8 158 
transducers in the same column were connected in parallel to enhance the transmission intensity. 159 
32 such columns constituted the linear array, yielding a 25.4 mm ultrasonographic aperture at 160 
moderate penetration depth (Supplementary Fig. 6e middle), which was suitable for sensing central 161 
arteries (e.g., carotid artery, femoral artery, and abdominal aorta).  162 
 163 
For the 2D array, 32 transducers at 6 MHz were used to constitute the array with a 0.8 mm bi-axial 164 
pitch. The overall dimension of the 2D array was the smallest in comparison with the other two 165 
cases. Such a design guaranteed a narrow beam (Supplementary Fig. 6e right), which allowed for 166 
high spatial resolution sensing for shallow (e.g., radial and brachial) arteries. 167 
 168 
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Supplementary Discussion 2. Sequence control of the ultrasonic sensing 169 

 170 
To achieve ultrasonic sensing, we customized the control sequence of the USoP, as shown by the 171 
detailed flow diagram (Extended Data Fig. 2a). Each operation cycle of the USoP was divided into 172 
the pulse-echo sensing period and the multiplexing period. The switching between these two 173 
periods was controlled by the sequencer toggling the receive-enable signal (Extended Data Fig. 174 
2b). 175 
 176 
In the pulse-echo sensing period, the receive-enable voltage was set to be logical high for 320 μs. 177 
Within this period, the microcontroller sent trigger signals to allow the pulse generator to output a 178 
high-voltage impulse, and the receiver circuit then received the echo signals from the transducer 179 
(Extended Data Fig. 2c). 180 
 181 
In the transducer multiplexing period, the sensing-enable voltage was set to be logical low for 680 182 
μs. Within this period, the sequencer sent a series of digital signals to the multiplexer, including 183 
the clock (CLK), reset (RES), digital input (Din), and latch enable (LE����). These digital signals 184 
functionalized the shift register and latch in the multiplexer for transducer selection. An example 185 
channel selection sequence was shown in Extended Data Fig. 2d. A RES signal was first applied 186 
to the latch to clear previous channel selection, and then the Din was turned to logical high to 187 
initiate channel selection. Three rising edges were counted before LE���� signal turned low to latch 188 
the channel selection. Therefore, the third sensing channel was selected for the next cycle of pulse-189 
echo sensing.  190 
 191 
Supplementary Discussion 3. Multi-mode ultrasonic sensing 192 
 193 
 The USoP is designed to support multiple ultrasound sensing modes, including amplitude mode 194 
(A-mode), motion mode (M-mode), and brightness mode (B-mode). 195 
 196 
A-mode is a fundamental sensing mode where the ultrasonic probe interrogates the tissue as a one-197 
dimensional depth recorder and produces a graph of the echo amplitude against the acoustic time-198 
of-flight. An ultrasound beam was generated to penetrate the tissue layers, and then the beam was 199 
reflected by tissue interfaces of mismatched acoustic impedances. The tissue impedance 200 
information was then encoded in the amplitudes of the ultrasonic reflections, while the depth 201 
information was encoded in the acoustic time-of-flight. An example of A-mode sensing is shown 202 
by the arterial diameter measurement using a 4 MHz probe (Supplementary Fig. 16a left). The 203 
posterior and anterior wall reflections were captured as the local maximums in the echo amplitude. 204 
Based on the echo amplitude signal, the arterial diameter could be calculated from the acoustic 205 
time-of-flight and acoustic speed in tissues (Supplementary Fig. 16a right). 206 
 207 
M-mode can be considered as continuous A-mode sensing. In M-mode, the echo amplitude is 208 
encoded as the brightness of the pixel, freeing up one axis of the graph for temporal information. 209 
Therefore, M-mode can capture the motion of tissue interfaces over time along a one-dimensional 210 
scanning line, providing sensing resolution in depth (y-axis) and in temporal domains (x-axis). In 211 
M-mode, the ultrasonic beams were repetitively transmitted to tissues for continuous sampling. 212 
During each cycle of transmission, one frame of A-mode signal was generated. By converting the 213 
A-mode frames into grey-scale pixels columns and plotting these columns as a function of time, 214 
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M-mode images could be generated. An exemplary application capturing the carotid artery 215 
pulsation suggests that M-mode images can continuously capture the arterial distensions using a 4 216 
MHz linear array. Two frames of radiofrequency echo signal show the minimum and maximum 217 
arterial diameters (Supplementary Fig. 16b left), which correspond to the diastolic and systolic 218 
phases of the arterial pulsation (Supplementary Fig. 16b right). 219 
 220 
Moreover, when a probe with 2D layout is used in M-mode sensing, not only the axial resolution 221 
but also the spatial distribution of the motion can be acquired. Each transducer in the 2D array can 222 
generate an independent beam for M-mode sensing, and the amplitude of tissue movements was 223 
then calculated to locate the position of maximum motion amplitude. Such a sensing mode can be 224 
used for spatial detection of target arteries or guiding catheterization. As a demonstration, we 225 
mapped the arterial pulse waveform at the brachium using a 6 MHz 2D layout probe. The arterial 226 
pulse amplitudes and the mapped location of the brachial artery are shown in Supplementary Fig. 227 
16c. 228 
 229 
Besides axial resolution, the lateral and elevational resolutions of the arrayed probes could be 230 
defined by the transmission beam patterns in A-mode and M-mode. Ideally, a single transducer 231 
would transmit a narrow beam. However, the real beam would spread laterally and elevationally. 232 
With such a spread beam pattern, two adjacent objects with a spacing smaller than the beam width 233 
cannot be differentiated by the transducer. Thus, this beam width determines the lateral and 234 
elevational resolution of non-imaging sensing. Therefore, we simulated the transmission beam 235 
patterns, and characterized the -3dB width of the beam as the lateral/elevational resolution of three 236 
probes (Supplementary Fig. 17).  237 
 238 
B-mode generates images with axial and lateral resolutions, while the elevational resolution is also 239 
defined by the transmission beam pattern. In B-mode, arrayed transducers sequentially transmit 240 
and receive echo signals, working as a synthetic active aperture. The received echo signals are 241 
processed by delay and sum beamforming4 and I/Q filters5, and then the echo amplitudes are 242 
converted to pixel brightness to reconstruct grey-scale 2D images. To demonstrate the B-mode 243 
sensing resolution of the 4 MHz linear array, we used a phantom made of an iron wire in water 244 
(Supplementary Fig. 16d left). We defined the imaging resolution as the full width of the half 245 
maximum of the echo from the iron wire. when the iron wire was moved from 1 cm to 3 cm in 246 
depth, the axial and lateral resolution degraded, from 0.99 mm to 2.50 mm and from 0.75 mm to 247 
2.5 mm, respectively, (Supplementary Fig. 16d right). 248 
 249 
Supplementary Discussion 4: The sensing stability under probe deformation 250 
 251 
In addition, the soft probes that conform to highly curved skin surfaces may experience phase 252 
distortion. Therefore, we characterized the image stability with array distortions in both elevational 253 
and azimuth planes. 254 
 255 
The elevational distortion is not critical for either A-mode, M-mode applications, or B-mode 256 
imaging when the probe’s elevational aperture is small, because the smaller the elevational 257 
aperture, the smaller the time delay error caused by array bending (Supplementary Fig. 18a,b). We 258 
simulated the transmission beam patterns with varying bending radius (from 6 mm to ∞) 259 
(Supplementary Fig. 18c). Although the beam patterns suggest bending may introduce undesired 260 
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side lobes, the intensity of these lobes is much smaller than the main lobe (Supplementary Fig. 261 
18d). Additionally, when the bending curvature radius is >6 mm, the transmission beam pattern 262 
would have negligible widening (Supplementary Fig. 18e). Considering typical body parts have 263 
surface curvature radii much larger than 6 mm, the elevational distortion induced by human studies 264 
could be neglected.  265 
 266 
While the elevational distortion would not affect imaging applications, the azimuth distortion may 267 
compromise the B-mode imaging if the array deformation exceeds a safety threshold. Because 268 
beamforming requires accurate positioning of each transducer in the array to calculate the delay 269 
function, a bent array would cause phase aberration and resolution degradation. We simulated the 270 
B-mode images of point sources to quantify the effect of bending curvature on the images 271 
(Supplementary Fig. 19). With the bending curvature radii <6 cm, the B-mode images show 272 
artifacts in the shallow area (Supplementary Fig. 19b, upper panels). When the bending curvature 273 
radii ≥6 cm, the imaging quality is acceptable without obvious artifacts (Supplementary Fig. 19b, 274 
lower panels). Considering most body surfaces have curvature radii larger than 6 cm, the imaging 275 
results could be reliable. 276 
 277 
Supplementary Discussion 5. Measurements of tissue interfacial motions 278 
 279 
The motion of tissue interfaces can be continuously captured using M-mode sensing. By 280 
transmitting ultrasound beams into tissues at a pulse-repetitive-frequency of 25 Hz~1 kHz, the 281 
displacement of various dynamic tissue interfaces can be interrogated. Displacement of the tissue 282 
interfaces is encoded in radiofrequency echo signals.  283 
 284 
To decode the tissue motions, an auto-correlation method was deployed. In consecutively collected 285 
radiofrequency data frames, the echo from a tissue interface constantly moves within a specific 286 
range, shifting along the time axis but roughly maintaining its profile (Supplementary Fig. 20a).  287 
 288 
To decode the motion amplitude, the ultrasound radiofrequency data were first segmented to 289 
exclude the signal without motion. Envelopes of the segmented signals were then generated. After 290 
that, the auto-correlation method was applied to the generated envelope to obtain the auto-291 
correlation value between adjacent frames (Supplementary Fig. 20b). The lag (t) between two 292 
adjacent frames could then be determined by the position of the maximum auto-correlation value 293 
(Supplementary Fig. 20c). The motion, also known as the displacement between two frames, was 294 
calculated as half of the acoustic round trip d=c×t/2. Noted that the auto-correlation decoding is 295 
based on envelope shifting, thus it is not sensitive to the transducer bandwidth or ringing in the 296 
radiofrequency signals as long as the envelope can roughly maintain its profile during shifting. 297 
 298 
The tissue interfaces in this study, such as arterial pulsation, cardiac contraction, and diaphragmic 299 
movement, were of varying depths and excursion amplitudes, as summarized in Supplementary 300 
Table 3. 301 
 302 
Therefore, a proper selection of ultrasonic probes was needed to fit the specific sensing depths and 303 
resolutions. The waveforms in Fig. 2a were collected from a healthy 25-year-old participant. In 304 
these measurements, a 6 MHz 2D probe was used for arterial pulsations in shallow arteries with 305 
minimum excursions (~0.05 mm), such as the radial (2 mm deep) and brachial arteries (4 mm 306 
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deep). A 4 MHz linear array probe was used for deeper arteries with medium excursions (~0.5 307 
mm), such as the carotid artery (14 mm deep), femoral arteries (17 mm deep), and abdominal aorta 308 
(60 mm deep). A 2 MHz disc probe was used for central organs with large excursions (>8 mm), 309 
such as the heart (70 mm deep) and diaphragm (120 mm deep). 310 
 311 
Supplementary Discussion 6. Measurement and calibration of arterial blood pressure 312 
 313 
From biomechanics, the measured pulse intensity effectively represents the arterial diameter 314 
change1, which is a function of two variables: blood pressure and arterial stiffness. The blood 315 
pressure tends to expand the cross-section of the artery, while the arterial wall stiffness resists this 316 
expansion.  317 
 318 
The exponential relationship between the diameter and arterial stiffness is independent of the blood 319 
pressure at the time of measurement within the physiological range (63-200 mmHg)6,7. The 320 
equation can be used to derive1,6: 321 

p(t)=p
d
*e

β�
D(t)

Dd
-1�

  322 

and 323 

β=
Dd ln�ps/pd�

Ds-Dd
  324 

where �(�) is the time-dependent blood pressure and �(�) is the time-dependent arterial diameter; 325 
�� and �� are the systolic and diastolic arterial diameters, respectively, derived from the measured 326 
pulse intensity; �� and �� are the reference systolic and diastolic pressures, respectively, measured 327 
using a commercial blood pressure cuff; and � is the stiffness index6.  328 
 329 
First, ��, ��, ��, and �� at the brachial artery of the subject were measured to obtain �, with the 330 
subject sitting upright in a chair with the measured arm relaxed on a table. Specifically, �� and �� 331 
were measured using a commercial cuff as calibration. The arterial diameter was then measured at 332 
the same location using the USoP to derive �� and ��. Then, �(�) was determined based on the 333 
corresponding �(�) measured by the USoP.  334 
 335 
Measurement of �(�) using the USoP is highly stable with little need for recalibration. The initial 336 
calibration using the commercial cuff only needs to be performed once at the beginning of this 337 
process, as �� remains relatively stable from beat to beat1. The measurement of blood pressure 338 
using the USoP at the brachial artery is applicable to other arterial sites as well because � and �� 339 
do not change significantly along the major branches of the arterial tree1,8. This allows us to equate 340 
brachial blood pressure measurements to the carotid blood pressure in healthy adults9. Note that � 341 
and �� may change substantially on younger subjects8 and patients with vascular diseases, such as 342 
carotid atherosclerosis10. In these populations, we may need to acquire accurate local carotid 343 
stiffness index and carotid blood pressure using catheterization to minimize the calibration error11-344 
13. In addition, the body habitus of the subject may also influence the calibration accuracy. For 345 
example, the height of subject may influence vascular resistance and further influence blood 346 
pressure calibration14. In such cases, the vascular resistance could be estimated using nomograms 347 
or demographic databases15, and then the stiffness index for blood pressure calibration could be 348 
corrected for better accuracy.  349 
 350 
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Supplementary Discussion 7. Pulse wave velocity measurements 351 

 352 
The pulse wave velocity is defined as the propagation distance divided by the pulse transit time. 353 
Following a standard procedure16, the propagation distances were measured on the body surface 354 
of the participants using a tape measure17. Example tape measurements from a healthy participant 355 
illustrate the path lengths (Extended Data Fig. 5a). Then, a pair of USoPs were deployed to 356 
measure the pulse propagation delay between myocardium contraction waveforms and the arterial 357 
pulse waveforms (Extended Data Fig. 5b). For each measurement pair, the two USoPs were 358 
synchronized by encoding time stamps in each cycle of pulse-echo transceiving.  359 
 360 
Following the recommendations for pulse wave velocity measurement from the ARTERY Society, 361 
the pulse transit time was calculated based on the foot-to-foot method18, where the pulse transit 362 
time was defined as the mechanical propagation delay between the diastolic phase of myocardial 363 
contraction and arterial pulsation waveforms (Extended Data Fig. 5b). To validate the accuracy of 364 
the pulse transit time, the results of the USoP were compared with those of the tonometer. The 365 
comparison suggests a mean difference of <1 ms, showing high consistency between the two 366 
devices (Extended Data Fig. 5c). 367 
 368 
A systemic stiffness mapping across different arterial segments was performed to show the 369 
variation of pulse transit time and, therefore, regional pulse wave velocity (Extended Data Fig. 370 
5d). We observed an apparent increase in pulse wave velocity, indicating an increase in arterial 371 
stiffness, from heart-proximal (e.g., heart-aorta, heart-carotid artery, and heart-femoral artery) to 372 
heart-distal branches (e.g., heart-brachial artery and brachial-radial artery) (Extended Data Fig. 373 
5e). A cold pressor test was performed sequentially. After the subject’s hand was put in ice water 374 
for 5 min, the pulse wave velocity remained almost stable at proximal branches (e.g., heart-aorta, 375 
heart-carotid artery, and heart-femoral artery), but increased substantially at distal branches (e.g., 376 
heart-brachial artery and brachial-radial artery) due to the cold-induced regional vasoconstriction 377 
(Extended Data Fig. 5e). 378 
 379 
Supplementary Discussion 8. Evaluation of respiratory function based on typical expiratory 380 
volumes 381 

 382 
According to the guidelines from American Thoracic Society19 and European Respiratory 383 
Society20,21 for respiratory function testing, we measured the typical expiratory volumes such as 384 
the forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) 385 
(Supplementary Table 4). 386 
 387 
A lower limit of normal (LLN) was used as the diagnostic threshold. The LLN was set as each 388 
parameter’s value of the lower fifth percentile of a large healthy reference group. The LLN depends 389 
on the age, height, ethnicity, and other health conditions of the subject, so its value varies in 390 
different individuals. In practice, the LLN values for a specific subject were calculated using the 391 
NHANES III database provided by the Centers of Disease Control and Prevention22.  392 
 393 
Then, the respiratory function was evaluated based on the following criteria: If FEV1/FVC ratio < 394 
LLN, the patient is considered to have an obstructive issue. If FEV1/FVC ratio ≥ LLN while FVC 395 

< LLN, the patient is considered to have a restrictive issue. Further assessment should be made 396 
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according to the patient’s total lung capacity. If FEV1/FVC ≥ LLN and FVC ≥ LLN, the patient 397 

is considered healthy. 398 
 399 
In this study, the FVC and FEV1 were derived from the USoP measured diaphragm excursion 400 
(Supplementary Fig. 23a). A four-quadrant plot shows the measurement results (Supplementary 401 
Fig. 23b). Data points in the top-right, top-left, bottom-right, and bottom-left suggest that the 402 
patient has healthy, obstructed, restricted, and combined obstructed and restricted conditions, 403 
respectively. For a health subject without respiratory issues, these values could be used to quantify 404 
expiratory performance.  405 
 406 
A longitudinal study was performed to record the FVC and FEV1 of a participant. The initial FVC 407 
and FEV1 values were recorded, and then the participant was enrolled in a training program to 408 
perform regular aerobic exercise for four months. A significant increase in the FVC was observed 409 
from the four-quadrant plot (Supplementary Fig. 23b), suggesting improved respiratory function 410 
post-training. 411 
 412 
Supplementary Discussion 9. Performance validation of deep learning models and 413 
comparison with logistic models 414 
 415 
1. Performance comparison between available deep learning models 416 
We compared the performance of four different models, including MobileNetV2, ResNet, VGG11, 417 
and VGG13, in the carotid artery classification task. The model performance was determined 418 
through a leave-one-out 10-fold training-validation process. Specifically, 4600 images were 419 
randomly divided into ten folds; each with 460 images. In each turn, we picked one-fold in order 420 
as the validation set and the remaining nine folds as the training set. After ten turns, we calculated 421 
the average performance of each model. 422 
 423 
Based on the training-validation results, we generated the receiver operating characteristic curves 424 
and evaluated the models by the area under the curve. Each point on the receiver operating 425 
characteristic curves represents the true positive rate and false positive rate under different 426 
classification thresholds from 0 to 1. VGG13 with batch normalization achieved the highest area 427 
under curve and accuracy (Extended Data Fig. 6) and thus was selected as the best model for this 428 
work. 429 
 430 
2. Dependability of the VGG13 model 431 
To validate the model dependability and prove that the VGG13 model is truly learning the arterial 432 
pulsating pattern for classification rather than building spurious correlations between training sets 433 
and validation sets. We trained and validated the VGG13 model with images that the artery region 434 
partially and totally cropped out (Supplementary Fig. 24a, left three panels). With the salient 435 
regions removed, the remaining images lose rich geometrical information including bright strip 436 
patterns (strong ultrasonic reflection from arterial walls) and sawtooth texture (arterial pulsating). 437 
Therefore, the trained classifier is supposed to degrade in performance. 438 
 439 
As shown in Supplementary Fig. 24b, the VGG13 model performance experienced a gradual 440 
degradation with more salient regions cropped. Note that even with the two walls cropped, the 441 
VGG13 model maintained its classification ability and performed better than random guesses (50% 442 
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accuracy). For one wall-cropped case, the remaining posterior wall is still an identifiable feature 443 
for classification. For the two-wall cropped case, the pulsating feature also existed in the 444 
surrounding tissue. When the artery pulses, the mechanical cave would propagate in surrounding 445 
tissues and generate tissue pulses, although the tissue pulses had smaller amplitudes due to energy 446 
loss in propagation. Therefore, the tissue texture (Supplementary Fig. 24a, the third panel from 447 
left) could also serve as a differentiable but weak feature. 448 
 449 
In addition, we did an additional experiment to shuffle the label before the train/validation split 450 
happen. The images were labeled with CA and nCA regardless of their true identity 451 
(Supplementary Fig. 24a, the rightmost panel). After training, the model learned chaotic 452 
correlations and had a poor performance that the precision, recall, and accuracy are close to 50% 453 
(Supplementary Fig. 24b). Differently from regional cropping, randomly labeled images failed to 454 
guide the model to generate an efficient classifier to differentiate CA and nCA images and resulted 455 
in unpredictable and poor classification results. 456 
 457 
3. Advantage of VGG13 model over conventional logistic models 458 
Besides the deep learning classification model, we also developed a logistic classification model 459 
based on carotid artery image features. We intuitively chose the sawtooth-shaped pattern in the 460 
image as the most salient feature to differentiate carotid artery and non-carotid artery images. 461 
Based on conventional image processing methods, the model took three steps to classify images 462 
(Supplementary Fig. 25a). First, we segmented the images to keep only the arterial region based 463 
on empirical knowledge of carotid artery depth (~1.5 cm)23,24. Second, the edges of the gray-scale 464 
image were extracted (Supplementary Fig. 25b). The image passed a Gaussian smoothing filter to 465 
remove excessive details and then the potential wall edges were extracted by a Canny detector25. 466 
Third, the detected edges were combined (by averaging their vertical coordinate value) into one 467 
edge curve representing possible arterial pulses. We then detected the pulse through spectrum 468 
analysis. Supplementary Fig. 25c shows an example of CA image, where the edge curve was 469 
extracted from a carotid artery image. After fast Fourier transforming, the frequency response 470 
suggested a peak at ~1 Hz representing a heart rate of 60 bpm. In an nCA case, the extracted edge 471 
curve would be non-periodic, therefore its frequency response would show no notable peaks within 472 
the heart rate range. Therefore, by detecting peaks in the frequency spectrum, we could know 473 
whether real carotid pulses exist, therefore classify CA and nCA images. In our model, the heart 474 
rate range was set to 48-108 bpm. 475 
 476 
Moreover, this logistic model could use either one-wall or two-wall detection criteria.  For one-477 
wall detection criteria, as long as there is one “pulsating wall” (most likely the anterior wall) 478 
detected in the image, the image is considered a “CA image”. The two-wall detection only 479 
considers the image to be “CA” if both anterior and posterior walls are present. With this more 480 
rigorous criterion, two-wall detection could reject more false negative (nCA) cases, but also reject 481 
more true positive (CA) cases. Our validation results supported the same conclusion that the one-482 
wall criterion offered a better recall, while the two-wall criterion had a better precision. Two 483 
criteria performed similarly in accuracy, which reached ~61% (Supplementary Fig. 25d). 484 
 485 
However, a classification accuracy of 61% was far from acceptable. In iterative tests, we found 486 
that the classifier tended to fail with perturbed images in this work (e.g., noise coupling, artery 487 
shifting, and artery missing). These corner cases could compromise the edge detection process 488 
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(Supplementary Fig. 25e) and eventually result in false classification. On the contrary, the VGG13 489 
model could handle the perturbation in the images and maintain high accuracy (>99%) (Extended 490 
Data Fig. 6). In addition, the critical parameters used in the logistic model (e.g., the Gaussian 491 
standard deviation and edge detection threshold) are subject-dependent. Manual iterations and 492 
tedious optimizations would be required before the model could accept a new subject. The deep 493 
learning model could transfer the model to new subjects via a minimal entropy correlation 494 
alignment model26 without manually tuning parameters. 495 
 496 
With these results presented, we could conclude three advantages of the deep learning model over 497 
logistic models and justify the use of deep learning models in our task. First, it offered better 498 
classification accuracy. Second, it is more dependable to handle “corner cases” than the logistic 499 
models. Third, it offers labor-free generalization opportunities while the logistic models rely on 500 
manual optimizations. 501 
 502 
Supplementary Discussion 10. Probability profile generation from the prediction results 503 
 504 
Deep learning networks produce a posterior probability for the presence of the carotid artery in 505 
each of the 32 channels. Ideally, this should follow a bell-shaped profile, with the peak of this 506 
profile representing the arterial center. However, the probabilities produced by the network may 507 
have random noise due to possible acquisition of compromised M-mode images. This could lead 508 
to misjudging the position of the arterial center.  509 
 510 
To decrease the possibility of such failure, we convolved the raw prediction profile with a one-511 
dimensional Gaussian kernel function. In our experiments, this was sufficient to produce a bell-512 
shaped curve that reliably determines the position of the arterial center. The plot of Supplementary 513 
Fig. 26 shows 50 predictions of the carotid artery center against the human-determined ground 514 
truth, suggesting a close to one-to-one correspondence (y=1.004x-0.137) between the predicted 515 
channel number and the ground truth. 516 
 517 
Supplementary Discussion 11. The limit of motion tolerance and pulse waveform continuity 518 
 519 
The speed of head motion is a critical factor that can compromise model prediction and waveform 520 
recording of the carotid artery. For very high motion speeds, attempted measurement of the carotid 521 
artery risks the signal passing through the sensing channels without even generating a full pulse 522 
cycle. Because the pulsation pattern in the M-mode image is the key to differentiating carotid from 523 
non-carotid artery images, the rapid motion might possibly result in a lack of features for the model 524 
to recognize. To address this possibility, we recorded the arterial signal with an increasing head 525 
yawing rate to demonstrate the robustness of the waveform acquisition and expected a 526 
classification model failure by increasing the yawing rate ultimately. 527 
 528 
The head yawing rate was quantified using a pair of inertia measurement units (Supplementary 529 
Fig. 27). When the head yawing rate was increased from 0°/s to 80°/s, the recorded pulse periods 530 
decreased from 2.8 s to 0.3 s (Supplementary Fig. 30). The former period contained at least two 531 
cycles of arterial pulsation at a resting heart rate (i.e., 60~80 bpm), while the latter period contained 532 
less than 1/3 of a pulse cycle. Without a complete pulsation pattern in the M-mode image, the 533 
machine learning model was unable to recognize the carotid artery. According to the results in 534 
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Supplementary Fig. 30d, the threshold of a recognizable pulse cycle is ~1 s, corresponding to ~1 535 
pulse cycle and a head yawing rate of ~60°/s, to ensure the true positive (true carotid artery image) 536 
rate is high enough for a successful prediction. 537 
 538 
At a relatively low yawing rate (i.e., <60°/s), each sensing channel can collect a long period of 539 
arterial pulses containing several cardiac cycles. In this situation, the classification model reliably 540 
recognized the M-mode images containing the carotid artery pulses. Thus, the pulse waveforms 541 
experienced no distortion under the re-selection of scanning channels. However, at a relatively 542 
high yawing rate (i.e., ≥60°/s), the artery crossed over sensing channels, resulting in a significantly 543 
decreased pulse period in M-mode images and thus a low true positive rate. Ultimately, the 544 
waveform recording experienced distortion. 545 
 546 
After the rapid motion, the model can continue searching among sensing channels, and whenever 547 
a channel has a ~1 s pulse period recorded, the model is then able to recognize this latest best 548 
channel and establish a new scanning channel. Thus, good pulse waveform recording can be 549 
quickly restored (Supplementary Fig. 31). 550 
 551 
Supplementary Discussion 12. Training principles of a minimal entropy correlation 552 
alignment (MECA) model 553 

 554 
Training classifiers require data labeling, which requires some effort by human annotators. 555 
Domain adaptation is used to transfer a classifier trained with labeled data from a single subject to 556 
other subjects for whom labels are not available. We define the training set as the source domain 557 
data, �� = {(��

�, ��
�)}���

�� , containing pairs of images ��
� and labels ��

�. The images collected from 558 

new subjects belong to the target domain, �� = {��
�}���

�� , where we only have images, � �
�, but no 559 

labels, ��
�. 560 

 561 
The goal of domain adaptation is to learn a transfer function � that aligns features extracted from 562 
images from the source (�� ) and target (�� ) domain. We select the MECA as our domain 563 
adaptation model because it provides a systematical way to adjust the weight of the domain 564 
discrepancy and the cross-entropy in the loss function26. It is crucial to minimize the human effort 565 
in hyper-parameter fine-tuning for applications in this work because there will be multiple 566 
subjects. In this model, the distance between the domains is measured with the squared log-567 
Euclidean distance, which is defined as: 568 

 ����(��(��), ��(��)) =
�

��� ||�diag(log(��), . . . ,log(��))�� − �diag(log(��), . . . ,log(��))��||�
�  569 

where ��(��) and ��(��) are the covariance matrices of the feature vectors generated by the domain 570 

transferer G for source and target data, respectively; � is the dimension of these feature vectors; � 571 
and � are the eigenvector matrices of the eigendecomposition of ��(��) and ��(��); � and � are 572 

the corresponding eigenvalues; and � represents the Frobenius norm. By minimizing this distance, 573 
we can train the transfer function � to unify the source domain and the target domain. 574 
 575 
Supplementary Discussion 13. Dataset size required for domain adaptation 576 

 577 
To verify the minimal number of images that were needed for a successful domain adaptation, we 578 
performed a grid search on the number of training images (labeled) and new images (from a new 579 
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subject, unlabeled). For this, we reduced the number of training images from 256 to 32 with a step 580 
of 1, and the number of new images from 256 to 16 with a step of 16. A heatmap of the resulting 581 
classification accuracy is shown in Supplementary Fig. 33. We found that 67 labeled images from 582 
an existing subject and 32 unlabeled images from a new subject were sufficient to achieve an 583 
accuracy above 90%. This could be considered a minor effort in image collection. When the 584 
number of image drops below these boundaries, the accuracy can drop significantly 585 
(Supplementary Fig. 33). 586 
 587 
Supplementary Discussion 14. Systolic and diastolic blood pressure changes during exercise 588 
 589 
The acute increase in systolic blood pressure during exercise is primarily driven by increases in 590 
cardiac output, while the change in diastolic pressure during exercise is additionally affected by 591 
peripheral vascular resistance. During exercise, the cardiac output increases while the peripheral 592 
vascular resistance decreases, counterbalancing the changes to diastolic pressure by dissipating the 593 
pressure across the vasculature27,28. These interactions manifest as greater increases in systolic 594 
pressure than in diastolic pressure during exercise. 595 
 596 
Supplementary Discussion 15. Quantifying the vascular response to exercise 597 
 598 
In both cycling and HIIT, the blood pressure waveforms have changing profiles, suggesting 599 
increased differences between the systolic peak and secondary (reflected) peak during exercise 600 
(Supplementary Fig. 34). This change indicates a reduced reflection from the distal ends of the 601 
arterial tree due to flow-mediated vasodilation29.  602 
 603 
We used the pulse wave decomposition analysis method30 to analyze the pulse profiles and 604 
quantify the vasodilation occurring in exercise. Using this method, the pulse waveforms measured 605 
from central arteries (e.g., aorta and carotid artery) are decomposed into the forward and reflection 606 
waves. The forward waves are generated by the heart, while the reflection waves are considered 607 
as backpropagations from the distal ends of the arterial tree (Supplementary Fig. 35a). More 608 
constrictive arteries are of higher impedance and tend to have stronger reflection waves and faster 609 
backpropagation speeds (Supplementary Fig. 35b upper panel). This results in an early and strong 610 
reflection peak in the arterial pulse waveform. On the contrary, dilated arteries are of lower 611 
impedance, which have weaker reflections and slower backpropagation speeds, and thus, lead to a 612 
late and mild reflection peak in the pulse waveform. 613 
 614 
We used the AIx to quantify vasodilation31. The AIx is defined as the difference between the 615 
systolic peak and the reflection peak/inflection point divided by the systolic peak. Example 616 
waveforms recorded before and after exercise indicate an increase in the AIx due to dilated arteries 617 
and decreased impedance of pulse wave propagation post-exercise (Supplementary Fig. 35b lower 618 
panel). 619 
 620 
In practice, the AIx can be calculated in a beat-to-beat manner from the blood pressure waveforms. 621 
In this work, the beat-to-beat AIx’s were averaged over every minute to minimize potential errors 622 
associated with accidental waveform distortions. 623 
 624 
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Supplementary Discussion 16. Changes in arterial stiffness index and errors in blood 625 
pressure calibration during exercise 626 
 627 
The blood pressure-arterial diameter relationship is applicable to exercising subjects. The � -628 
stiffness index is independent of the blood pressure in the physiological range6,7. Also, it has been 629 
reported that there are no significant changes in arterial stiffness before and after non-resistance 630 
exercise32-34, such as cycling or HIIT, in elastic major arteries (e.g., aorta and carotid artery).  631 
 632 
To quantify the error in blood pressure recording during exercise, we compared � values during 633 
and after cycling (Supplementary Fig. 36a). The carotid artery diameter during strenuous exercises 634 
increased up to 19.91% from baseline35. Accordingly, the maximum blood pressure error is 635 
calculated to be 1.58 mmHg between the two � values from the resting carotid artery diameter 636 
(3.92 mm) to the high intensity exercise-induced carotid artery diameter (4.70 mm) 637 
(Supplementary Fig. 36b). This blood pressure error was lower than the recommended maximum 638 
mean difference of 5 mmHg by the Association for the Advancement of Medical 639 
Instrumentation36. Thus, there is no need to adjust �  when measuring blood pressure during 640 
exercise. 641 
 642 
Supplementary Discussion 17. Stroke volume estimation using the pulse contour method  643 

 644 
In the Windkessel model of the circulation28, the blood pressure waveform can be used to monitor 645 
fluid flow throughout the circulatory system, such as flow velocity, distensibility, pressure, and 646 
volume, which allows relating the pulse contour waveform to the stroke volume. 647 
 648 
In the Windkessel model, the distensibility c is expressed as28: 649 

c=
dP

dV
=c  650 

where � is pressure and � is the volume of the fluid. The main differential equation describing the 651 
system is written as28: 652 

i*dt=
dP

c
+

P*dt

w
  653 

or 654 

dt=
dP

c�i-
P

w
�
  655 

where � is the volume of liquid flowing in per unit time; � is time; and � is the constant 
���

���
 from 656 

Poiseuille’s law. 657 
 658 
Because the artery is nonrigid, the inflow and outflow at a given time are not equal to each other 659 
even though the blood is an incompressible fluid. Therefore, � should be averaged over the entire 660 
cardiac cycle. Integrating the main differential equation leads to28:  661 
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for a nonzero initial pressure �� at time � = 0. The equation then becomes28: 663 
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leading to the pressure equation28: 665 
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 667 
Wesseling and coworkers have used the aforementioned Windkessel model as a basis for 668 
calculating the stroke volume by integrating the area under the curve of the pulse contour37,38. In 669 
essence, the pressure increases in proximal large arteries (e.g., aorta or carotid) are determined by 670 
the systolic blood output from the heart. Therefore the area under the systolic portion is 671 
proportionally related to the stroke volume39, by a factor representing the characteristic impedance 672 
of the circulatory system, �37,38: 673 

Stroke Volume=
1

Z
� [P(t)-Pd]dt

Te

0

 674 

where ��  is the end of the ejection period; P(t) is the real-time blood pressure; and ��  is the 675 
diastolic pressure. The characteristic impedance � may be calibrated to another measure of stroke 676 
volume such as indicator dilution, or simply estimated using factors such as age, sex, height, and 677 
weight of the subject38,40. In this study, we adopted an estimated value for the participant’s 678 
characteristic impedance �=0.056 mmHg·s/ml41. 679 
 680 
Supplementary Discussion 18. Errors in conventional ultrasonography 681 

 682 
Errors can be generated in conventional ultrasonography on both the operator side as well as the 683 
patient side. On the operator side, reliable probe positioning and accurate scanning are critical 684 
(Supplementary Fig. 39a-c). On the patient side, during the examination procedures, the measured 685 
body part must be still to avoid motion artifacts (Supplementary Fig. 39d). However, neither 686 
operator skills nor subject compliance is necessarily accessible outside the hospital or healthcare 687 
environment. Thus, enabling ultrasonography to be used by a general user on a moving subject 688 
during examination represents a critical step forward in the development of point-of-care 689 
ultrasound technologies.  690 
 691 
Supplementary Discussion 19. Clinical benefits of continuous monitoring during exercise 692 
 693 
First, continuous monitoring of blood pressure has stronger prognostic values than single transient 694 
measurements. Monitoring the blood pressure in response to stressors - most potently exercise - 695 
for an exaggerated systolic response is independently predictive of cardiovascular mortality42-44 696 
and risks, including future hypertension45,46, stroke42, atherosclerosis47, cardiovascular 697 
abnormalities48,49, insulin resistance50, and hypercholesterolemia51. Other stressors such as mental 698 
stress have similar associations, but due to their long-lasting or unpredictable nature, may require 699 
continuous monitoring over days or weeks in order to capture52.  700 
 701 
Second, vascular response to exercise, as a valuable indicator of cardiovascular fitness, can be 702 
characterized by pulse waveform analysis. For example, the AIx reveals pulse wave reflection and 703 
arterial stiffness53,54. A low AIx is desirable, as high arterial stiffness is strongly associated with 704 
cardiovascular diseases55-57. Increased arterial stiffness produces additional systolic load on the 705 
heart, limiting the exercise cardiac output and forcing the heart to work harder, which may 706 
eventually lead to heart failure58. Thus, reducing arterial stiffness is one of the main desired 707 
outcomes of endurance exercise training59.  708 



 17

 709 
Third, cardiac function, such as stroke volume and resulting cardiac output which represents the 710 
heart’s capacity to deliver blood throughout the body, can be derived using the pulse contour 711 
method39. All cells in the body require oxygen and nutrients delivered via the blood for their 712 
metabolism. The inability of the heart to deliver sufficient blood to support the body’s metabolic 713 
needs, such as abnormally low stroke volume and cardiac output at rest or early plateaus of cardiac 714 
output during exercise, is a hallmark of heart failure60. 715 
 716 
Fourth, for healthy populations, the same dose of exercise can result in very different responses in 717 
different persons (e.g., an average person vs. an athlete). Conventional measures of exercise 718 
intensity based on duration and repetitions are not personalized. The USoP can measure 719 
cardiovascular responses to exercise in real-time and thus provide insight into the actual workout 720 
intensity exerted by each person61, which can guide the formulation of personalized training plans.  721 
 722 
Fifth, for patient populations with cardiovascular disease, engaging in exercise is important for 723 
condition management. Exercise exceeding safety thresholds may induce risks, such as exercise-724 
induced hypertension62 or cardiac arrest63. The magnitude of the exercise-induced systolic blood 725 
pressure increase has also been shown to be predictive of mortality43, making exercise 726 
measurements a valuable prognostic indicator. In addition, central diastolic blood pressure is one 727 
of the main elements driving coronary perfusion. Therefore, continuously monitoring the central 728 
diastolic blood pressure may provide an early warning signal for acute cardiac ischemia64-66.  729 
 730 
Supplementary Discussion 20. Clinical need for continuous tissue monitoring in high-risk 731 
populations 732 

 733 
The USoP can monitor the cardiovascular and respiratory systems autonomously, using similar 734 
image-based machine learning algorithms to those for arteries. Continuous monitoring of these 735 
vital systems can be critical for certain high-risk populations, yielding better patient management 736 
and clinical outcomes.  737 
 738 
For example, senior populations are at high risk for developing coronary heart disease. However, 739 
the development of such diseases is chronic and often ignored before acute symptoms are detected 740 
(e.g., cardiogenic shock due to myocardial infarction67). Continuous monitoring can detect reduced 741 
fractional shortening or abnormal ventricular wall motion that reveals degraded cardiac function. 742 
Therefore, early signs of coronary artery diseases can be identified, making timely management 743 
of the disease possible. Similarly, continuous monitoring of respiratory function can enable the 744 
early identification of pulmonary dysfunction, such as reduced expiratory volume, and provide 745 
early warning of acute processes (e.g., pneumonia) or more chronic pulmonary disease, allowing 746 
for earlier and more definitive interventions.  747 
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 748 
Supplementary Fig. 1 | Ultrasonic devices for wearable or point-of-care applications. a, The 749 
rigid continuous wave Doppler flow sensor developed by Flosonics Medical68. b, The rigid hand-750 
held probe developed by Butterfly IQ69. c, The rigid piezoelectric micromachined ultrasound 751 
transducer (PMUT)-based hand-held probe proposed by Exo Cello70. d, The soft ultrasonic 752 
imaging device proposed by Ulimipia71. e, The soft cardiac monitor proposed by Pulsify Medical72. 753 
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Supplementary Fig. 2 | Probe layout designs for reducing noise coupling. a, When the signal 754 
electrode faces the skin, the parasitic capacitor Cs can directly conduct the in-band noise to the 755 
amplifier, resulting in a high noise floor. b, When the ground electrode faces the skin, the capacitor 756 
Cg will short the noise signals to the ground without interfering with the signal line. As a result, 757 
the received radiofrequency signal will have a cleaner baseline. 758 
  759 
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 760 
Supplementary Fig. 3 | Improved axial resolution with a backing layer. Without the backing 761 
layer, the echo envelope has a full width at half maximum (FWHM) of 1.98 mm. With backing 762 
layer, the echo signal has quenched ringing, which results in an improved FWHM of 0.34 mm. 763 
  764 
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 765 
Supplementary Fig. 4 | Radiofrequency signals collected from the carotid artery with and 766 
without gel. The arterial wall echoes acquired with gel (a) and without gel (b) were both strong 767 
and distinguishable. The results showed the echo amplitude would decrease by less than 15% when 768 
the gel was not applied. Therefore, gel-free measurements experience minimal signal degradation. 769 

770 
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 771 
Supplementary Fig. 5 | Durability test of the soft probe. The pulse-echo signals were collected 772 
from the neck with the same device. a, The raw radiofrequency signals acquired by a freshly 773 
fabricated device and a used device. b, The carotid blood pressure waveform acquired by a new 774 
device and a used device. 775 
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Supplementary Fig. 6 | Layout and beam profile designs of three soft probes. a, A cross-776 
sectional view of the stretchable probe design. The transducer and the backing layer are 777 
sandwiched by two layers of electrodes (ground (GND) and signal layers). A vertical interconnect 778 
access (VIA) is used to lead the ground electrode to the signal layer for connection. b, The two 779 
electrodes for the disc probe. The electrodes connect 112 transducers in parallel. c, The two 780 
electrodes for the linear array probe. The signal layer consists of 32 channels, and each channel 781 
has 8 pixels connected in parallel. d, The two electrodes for the 2D array probe. 32 transducers are 782 
grounded by one bottom electrode. The signal layer is distributed into four layers. e, Simulated 783 
acoustic transmission fields of the three probe designs, where penetrative, wide, and narrow beam 784 
profiles could be achieved by the disc, linear array, and 2D layouts, respectively. 785 
 786 
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Supplementary Fig. 7 | Characterization of the detachable ACF connection. a, The top view 787 
of the ACF for detachable connection. b, The cross-sectional schematic diagram showing the hot 788 
compression bonding process. The nanoparticles in anisotropic conductive adhesive (ACA) form 789 
vertical connections between the copper pad and ACF silver trace after hot compression. 790 
Debonding can be achieved by reheating and detaching the ACF and ACA from the copper pad 791 
when they are hot. c, Repetitive bonding and debonding were conducted fourteen times to show 792 
the reproducibility of the ACF connection. During each round of bonding, eight copper pads were 793 
bonded at once, and their impedances were measured. The average impedances were all <10 Ω, 794 
and minimally increased within 10 times of repetitive bonding and debonding. 795 
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Supplementary Fig. 8 | Layout designs of the fPCB circuit. a, Layouts of the fPCB with four 796 
layers of interconnects. b, Photos of the fPCB with key components (Supplementary Table 2) 797 
labeled. The analog front-end is 3 cm × 4 cm in size. The wireless data acquisition module is 3 cm 798 
× 3 cm in size. c, The circuit being bent and twisted to show its flexibility. 799 
  800 
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Supplementary Fig. 9 | Schematic connections of the analog front-end and wireless data 801 
acquisition module. The analog front-end consists of the pulse generator, receiver, multiplexers, 802 
transmit/receive switch (T/R SW), sequencer, and connectors. The wireless data acquisition 803 
module consists of a microcontroller (MCU, PIC32) with on-chip analog-to-digital converter 804 
(ADC) and a Wi-Fi circuit (ESP32). 805 



 27

Supplementary Fig. 10 | Foldability of the fPCB. a, The modular design of the circuitry 806 
consisting of the wireless data acquisition (DAQ) and the analog front-end (AFE) modules. The 807 
rigid chips with a thickness of more than 0.5 mm are highlighted with colored boxes. b, A zoomed-808 
in view showing the serpentine interconnects between the DAQ and the AFE module. The power 809 
supply wires connect the battery voltage (V+) and the ground (GND) between two modules. The 810 
AFE outputs radiofrequency (RF) signals, which are received by the DAQ as the input to the 811 
analog-to-digital converter (ADC). Meanwhile, the DAQ module outputs trigger signals, which 812 
are received by the AFE as the input to initiate pulse-echo sensing. c, The chip layout was designed 813 
to reduce the thickness of the fPCB when folded. After folding, the board-to-board spacing is 814 
determined by two components (Pin as battery connectors, and inductor L2) with a thickness of 815 
1.75 mm. Note that the overlapped chips (UR1 and U1_1) are of the same 1.75 mm thickness. 816 
Thus, the overlap does not add additional thickness to the folded device. d, Side views of the fPCB 817 
before and after folding. The folded DAQ and AFE modules have a minimum separation of 1.75 818 
mm. The footprint of the entire fPCB is reduced from 3 cm by 8.3 cm to 3 cm by 4 cm after folding. 819 
  820 
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Supplementary Fig. 11 | Designs of the mold for the elastomeric package. a, Three-view 821 
drawing and dimensions of the mold for the elastomeric package. b, The 3D printed mold and 822 
demolded elastomeric package piece. c, Two packaging strategies for the fPCB. For the first 823 
strategy, the fPCB is unfolded and encapsulated by the demolded elastomer piece and a flat 824 
substrate piece (left). For the second strategy, the fPCB is folded and wrapped by the demolded 825 
elastomer piece for a smaller footprint (right). In both packaging strategies, the packaged USoP 826 
would be applied to skin with commercially available medical silicone adhesives.  827 
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Supplementary Fig. 12 | Mechanical simulations of the fPCB and the elastomeric package. a, 828 
Top and bottom views of the fPCB. One cross-section of the printed circuit board along the white 829 
dashed line is simulated under bending. b, An optical image of the device cross-sectional geometry 830 
and the corresponding simulated maximum principal strain distribution in the fPCB. The 831 
maximum bending curvature achieved without plastic deformation is 0.14 cm-1, corresponding to 832 
a bending angle of 24.1°. The maximum principal strain and von-Mises stress of c, the human skin, 833 
d, elastomeric package, and e, fPCB. The simulation results suggest the deformations of the device 834 
are elastic under 10% skin stretching. f, An optical image of the packaged device under 10% 835 
uniaxial stretching. 836 
 837 
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Supplementary Fig. 13 | Comparison of the raw signal frequency and circuit sampling rate 838 
of representative wearable physiological monitors. According to the Nyquist–Shannon 839 
sampling theorem, the circuit sampling rate should be at least two times higher than the raw signal 840 
frequency for proper sampling. Thermal, biopotential, accelerometric, photonic, electrochemical, 841 
strain, and ultrasonic signals are compared. The USoP device in this work offers more than three 842 
orders of magnitude higher circuit sampling rate than the other sensors and thus can capture 843 
ultrasonic signals with much higher frequency. 844 
  845 
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Supplementary Fig. 14 | Wireless transmission of the ultrasonic signals via Wi-Fi. a, The 846 
testing setup showing data transmission between the USoP and a smartphone. b, The Wi-Fi signal 847 
intensity with increasing transmission distance. Within ~10 m separation, the Wi-Fi intensity can 848 
maintain >-60 dBm for reliable transmission. The intensity value was averaged from twenty 849 
repetitive measurements, and the error bar represents the standard deviation. c, The transmission 850 
speed at 10 m, with a 3.4 Mbps data transmission rate.  851 
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Supplementary Fig. 15 | Power consumption and battery life of the USoP. a, Current 852 
consumption of the circuit components with a 3.7 V input. The total average current consumption 853 
is 166 mA (24 mA for the analog front end (AFE) and 142 mA for the wireless data acquisition 854 
(DAQ) module). Thus, the power of the USoP is ~614 mW. b, Lifetimes (upper panel) and the 855 
corresponding length (L) width (W), and height (H) (lower panel) of commercial batteries. By 856 
increasing the battery capacity and size from 400 mAh, 4.76 cm3 to 2 Ah, 20.29 cm3, the USoP 857 
can continuously operate for 2.4 h ~12.0 h. 858 
  859 
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Supplementary Fig. 16 | Multi-mode sensing with wearable ultrasonic probes. a, A-mode for 860 
capturing arterial walls. Envelopes of radiofrequency signals indicate the amplitudes and positions 861 
of the reflection interfaces. The arterial diameter (d) is then the product of one half of the acoustic 862 
time-of-flight (t2-t1) and acoustic speed (c). b, M-mode for capturing the distensions of arterial 863 
walls continuously. Exemplary frames of radiofrequency signals (left) with corresponding 864 
diastolic and systolic phases in the M-mode image (right). c, Motion mapping of the brachial artery 865 
using the 6 MHz 2D probe. Based on the distension amplitudes (left and middle), the spatial 866 
orientation of the brachial artery can be mapped (right). d, B-mode imaging of an iron wire 867 
phantom using a 2 MHz linear array probe. Radiofrequency signals (left) illustrate the reflected 868 
wavefront of the iron wire. Reconstructed images (right) show the imaged iron wire at depths of 1 869 
cm, 2 cm, and 3 cm. The axial and lateral full widths at half maximum are labeled on the images 870 
showing the imaging resolution of the linear array at different depths. 871 
  872 
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 873 
Supplementary Fig. 17 | The lateral and elevational resolution of the soft probes. a, Schematic 874 
illustration of the soft probes showing the lateral and elevational direction of resolution 875 
characterization. b, The lateral and elevational resolution of a non-imaging array at a certain depth 876 
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could be defined as the beam width of each transducer. c, The lateral/elevational transmission 877 
beam pattern of the 2 MHz single transducer and its beam spreading profiles at 10-30 mm depth. 878 
c, The lateral/elevational transmission beam pattern of a single transducer in the 6 MHz 2D array 879 
and its beam spreading profiles at 10-30 mm depth. d, The lateral transmission beam pattern of a 880 
single transducer in the 4 MHz linear array and its beam spreading profiles at 10-30 mm depth. f, 881 
The elevational transmission beam pattern of one sensing channel in the 4 MHz linear array and 882 
its beam spreading profiles at 10-30 mm depth. The activated transducers were labeled in the inset 883 
photos. g, The -3dB beam width of the beam patterns showing the lateral and elevational 884 
resolutions of three probes. 885 

886 
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 887 
Supplementary Fig. 18 | The transmission beam patterns with elevational deformation. a, 888 
Schematics showing two arrays bent at a curvature of 10 mm-1. Both devices have 8 transducers. 889 
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The small aperture device has a pitch of 0.8 mm, while the large aperture device has a pitch of 1.6 890 
mm. A point source is set at 5 cm away from the array center. b, Corresponding time delay errors 891 
were calculated for each transducer. c, Simulated elevational beam patterns of the 4 MHz linear 892 
array. The probe was bent elevationally with radii of 5~10 mm and the beam patterns were 893 
compared with a flat array. d, Beam intensity profiles at a depth of 5 mm showing the side lobe 894 
intensities are <30% of the main lobe at all bending curvatures. e, -3dB beam width suggesting the 895 
bending is not generating significant beam widening when the bending radius is >6 mm. 896 
  897 
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 898 
Supplementary Fig. 19 | Simulated B-mode images of point sources with azimuthal bending. 899 
a, Schematics showing a bent linear array along the azimuthal direction. b, B-mode imaging results 900 
of point sources at depths of 1 cm, 1.5 cm, 2 cm, 2.5 cm, and 3 cm by a 4 MHz linear array with 901 
different bent radii. The results suggest artifacts (labeled with red arrows) would appear when the 902 
array is bent with a radius <6 cm. 903 
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Supplementary Fig. 20 | Tissue interfacial motion detection using the auto-correlation 904 
method. a, Two frames of radiofrequency echoes showing the motion of tissue interfaces. b, 905 
Segmented radiofrequency echoes containing the reflection from a tissue interface. The envelopes 906 
are generated from the echo segments to define the profile of the interfacial reflection. c, Auto-907 
correlation value calculated from the envelopes. A lag of 0.384 μs corresponding to the maximum 908 
auto-correlation value is determined as the time delay between the two frames. 909 
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Supplementary Fig. 21 | Probe positions and acoustic views of different bio-interface 910 
measurements. The probe positions and viewing angles are labeled in the schematics. B-mode 911 
images from a 25-year-old healthy subject were collected using a commercial Butterfly IQ hand-912 
held probe as references. a, Radial artery and b, brachial artery are collected using the default 913 
setting for “Vascular Access”. c, Carotid artery and d, femoral artery are collected using the default 914 
setting for “Vascular: Carotid”. e, Abdominal aorta is collected using the default setting for 915 
“Abdomen”. f, Left ventricle is collected using the default setting for “Cardiac”. g, Diaphragm 916 
dome is collected using the default setting for “Abdomen Deep preset”. 917 
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Supplementary Fig. 22 | Fractional shortening measurements using a commercial ultrasonic 918 
system. a, A B-mode image showing the parasternal long-axis view of the heart with a cross-919 
sectional view of the left ventricle. b, An M-mode image generated from the center scanning line 920 
of the B-mode image in a. The left ventricular internal diameter end systole (LVIDs) and end 921 
diastole (LVIDd) can be recorded. The fractional shortening can be calculated as (LVIDs - 922 
LVIDd)/LVIDd =30.18% in this case. 923 

924 
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Supplementary Fig. 23 | Calculations of expiratory volumes. a, Diaphragm motion during 925 
forced expiration recorded by the USoP. In the exhaling phase, the total excursion (FVC) and the 926 
excursion within the first second of exhaling (FEV1) were recorded. b, Based on the measured 927 
FEV1 and FVC, the respiratory function of a healthy volunteer was evaluated. The volunteer 928 
performed the same FEV1 and FVC measurements after participating in aerobic training ~5 hours 929 
per week for four consecutive months. The four-quadrant plot suggests an increased FVC, 930 
indicating an enhanced expiratory function. Unhealthy respiratory performance, such as 931 
obstructive, restrictive, and combined conditions, could be diagnosed if the FVC and FEV1/FVC 932 
values are below the lower limit of normal (LLN). 933 

934 
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 935 
Supplementary Fig. 24 | Model training and validation with modified datasets. a, 936 
Modifications to the original image datasets, including one wall cropped, two walls cropped, and 937 
label-shuffled images. b, The VGG13 model validation metrics on these modified datasets. The 938 
training/validation was conducted on a modified dataset of 3826 ultrasound images with a 1:1 939 
training/validation split. 940 
  941 
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 942 
Supplementary Fig. 25 | Classifying carotid artery images by the image processing and 943 
logistic model. a, Work flowchart of the logistic model. b, Image processing steps to extract salient 944 
edges in the image. c, Pulse detection based on fast Fourier transform. d, Validation metrics 945 
comparison between the logistic models and the VGG13 deep learning model. e, Compromised 946 
images, including noise coupling, artery shifting, and artery missing, lead to edge detection failure. 947 
  948 
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Supplementary Fig. 26 | Statistical validation of the prediction of the best channel for carotid 949 
artery sensing against the ground truth. 50 prediction results of the VGG13 model are plotted 950 
against the human-determined best channel. The regression function suggests a linear relationship 951 
(y=1.004x-0.137) between the prediction and the ground truth. The overlapped data points are 952 
plotted as offset crosses. 953 
  954 
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Supplementary Fig. 27 | Recording head rotation. a, Two separate inertial measurement units 955 
(LSM6DS3) were mounted on the head and chest of the participant to record head rotation. b, The 956 
circuit to interface LSM6DS3, which had a memory card to save the recordings for post-processing. 957 
c, The recorded yawing rates while the participant was performing torso rotation and head rotation. 958 
By calculating the difference between the head unit and the torso unit, the torso motion could be 959 
removed and thus, accurate head rotation could be recorded. 960 
  961 



 47

Supplementary Fig. 28 | Carotid artery displacements under head movements. a, Schematic 962 
illustration of 3-degree of freedom head rotations, including yawing, rolling, and pitching (left). A 963 
typical person can pitch and roll from -40° to +40° and yaw from -80° to +80°. The carotid artery 964 
has the largest displacement during head yawing (right). b, The B-mode images collected by a 965 
commercial ultrasonic probe showing the displacements under various head rotations. The 966 
coordinates labeled in the images are the position of the artery center. 967 
  968 
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Supplementary Fig. 29 | Detection of a moving artery using the linear array probe. a, A 969 
simulated acoustic beam profile when one sensing channel in the linear array is activated. The 970 
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beam center has the strongest acoustic intensity. b, Schematic illustration of the carotid artery (CA) 971 
cross-section during head movements. The dashed lines represent the beam centers of the sensing 972 
channels with the highest acoustic intensity. c, M-mode images recorded by each channel (Ch) 973 
while the carotid artery is moving. For each sensing channel, arterial pulses will appear for a period, 974 
when the artery is insonated by its acoustic beam. The periods containing arterial pulses are 975 
highlighted by white boxes. d, Readings of the sensing channels showing the position of the carotid 976 
artery. In this case, the carotid artery can be sensed by channels #13-17, #16-20, and #19-23 at t1, 977 
t2, and t3, respectively.  978 
  979 
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Supplementary Fig. 30 | M-mode images collected by one sensing channel with increasing 981 
yawing rates. a, Schematic illustration showing the relative positions of the acoustic beam and 982 
the moving carotid artery. b, M-mode images collected by one fixed sensing channel at a yawing 983 
rate of 20°/s. Three recognizable periods of recording are observed from the M-mode image when 984 
the carotid artery passes by. In the beginning, when the carotid artery is outside the sensing channel, 985 
no arterial pulses are detected (Period i). Pulses are recorded when the carotid artery moves 986 
underneath the sensing channel (Period ii). Finally, the pulse fades when the artery moves away 987 
from the sensing channel (Period iii). c, M-mode images with yawing rates increased from 0°/s to 988 
80°/s, showing a decreasing pulse period. When the yawing rate increases to 60°/s, the pulse period 989 
is shorter than one heartbeat period, meaning the M-mode image would record less than a full 990 
cycle of a pulse. d, The averaged pulse period and true positive rate (TPR, true carotid artery image) 991 
of M-mode images drop substantially when the yawing rate reaches 60°/s. For each yawing rate, 992 
100 images were used for calculating the averaged pulse period and TPR. The error bars represent 993 
the standard deviations of 100 pulse periods extracted from the image.  994 
  995 
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Supplementary Fig. 31 | Recorded pulse waveforms under increasing yawing rates from 0°/s 996 
to 80°/s. Under slow motions, the carotid pulse waveforms show high continuity. When the yawing 997 
rate increases to 70°/s and 80°/s, the waveforms start to show obvious distortions. 998 
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Supplementary Fig. 32 | Quantifying the domain distance and visualization of the domain 999 
distributions. a, The squared log-Euclidean distance, representing the domain distance, decreased 1000 
with increasing training epoch. b, The domain distribution was visualized using the t-distributed 1001 
stochastic neighbor embedding procedure. Before domain adaptation (Epoch 0), the source domain 1002 
(subject #1) and the target domain (subject #2) could be easily differentiated. After domain 1003 
adaptation (Epoch 3600), the two domains merged, showing no significant discrepancies.  1004 
  1005 
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Supplementary Fig. 33 | Heatmap of the classification accuracy observed after domain 1006 
adaptation with different numbers of images from the target and source domains. The 1007 
heatmap shows that a high accuracy (>90%) can be attained by using as few as 32 unlabeled images 1008 
from the target domain and 67 labeled images from the source domain for domain adaptation 1009 
training. 1010 
  1011 
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Supplementary Fig. 34 | Representative pressure waveforms recorded during cycling and 1012 
HIIT. Central blood pressure waveforms recorded during a, cycling and b, HIIT. The waveform 1013 
morphologies change significantly during exercise sessions. In both exercise scenarios, the 1014 
difference between the systolic pressure peak and reflection pressure peak increases during 1015 
exercise, indicating reduced distal reflection and increased vasodilation during exercise. 1016 
  1017 
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Supplementary Fig. 35 | Measurements of the AIx. a, Schematics showing the arterial blood 1018 
pulse waveform formation and the calculation of the AIx. The forward wave (P1) and reflected 1019 
wave (P2) constitute local peaks in a blood pressure waveform. AIx is calculated as the peak 1020 
difference divided by the forward peak. There is an additional local minimum point resulting from 1021 
the closure of the aortic valve (AV). b, Blood pressure waveforms from the carotid artery under 1022 
resting and post-exercise situations. In a resting situation, the distal end of the arterial tree has a 1023 
higher impedance, resulting in an early and strong reflection peak P2. On the contrary, in a post-1024 
exercise situation, the distal end has a lower impedance, resulting in a late and mild reflection peak 1025 
P2. 1026 
  1027 
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Supplementary Fig. 36 | Measurements of the arterial stiffness index (β) before, during, and 1028 
after exercise. The β value of each scenario was averaged from twenty independent measurements. 1029 
The error bar represents the standard deviation. a, The calculated β before, during, and after 1030 
exercise showing a negligible change of <0.34%. b, During exercise, such a change in β causes a 1031 
maximum error in blood pressure of 1.58 mmHg. 1032 
  1033 
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Supplementary Fig. 37 | Muscle recruitments and corresponding AIx during cycling and 1034 
HIIT. a, Different muscle groups are involved during cycling and HIIT. HIIT (i), (iii), and (vi) 1035 
share the same least muscle activation, during which the pectoralis, deltoids, and triceps are 1036 
activated. HIIT (v) has the second least muscle activation, during which the deltoids and 1037 
quadriceps are activated. Cycling has more muscle activation, during which quadriceps, tibialis, 1038 
and calve are activated. The HIIT (ii) has the second most muscle activation, during which the 1039 
rectus abdominus, abdominal obliques, and quadriceps are activated. The HIIT (iv) has the most 1040 
muscle activation, during which all muscle groups mentioned above are activated. b, The 1041 
calculated AIx during exercise, which increases with increasing the amount of muscles activated 1042 
during exercise. 1043 
  1044 
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Supplementary Fig. 38 | Estimation of the stroke volume by the pulse contour method. Two 1045 
central blood pressure waveforms collected from the carotid artery during rest and exercise. The 1046 
area under the curve (AUC) of the systolic phase is enlarged, indicating an increased stroke volume 1047 
during exercise. 1048 
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Supplementary Fig. 39 | Acquisition errors in conventional ultrasonography. B-mode and M-1049 
mode images are collected from the carotid artery using a commercial Butterfly IQ hand-held 1050 
probe. a, Clear B-mode (left) and M-mode (right) images collected with stable probe holding, a 1051 
correct scanning line, and the patient staying still. b, A compromised M-mode image with unstable 1052 
probe holding. c, Selection of a deviated scanning line in B-mode image (left), resulting in an 1053 
underrated arterial diameter in the M-mode image (right). d, An M-mode image with motion 1054 
artifacts due to patient movement. 1055 
  1056 
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Company 
Flowsonics 

Medical 
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Pulsify 
Medical 
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wearable 
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wave 
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ed ultrasound 

transducer 
(CMUT)-

based hand-
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Piezoelectric 
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d ultrasound 
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Wireless 
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imaging 
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Rigid/soft 
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and rigid 
circuits 
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and rigid 
circuits 
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circuits 
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soft patch 
and rigid 
circuits 

Potentially 
soft patch 
and soft 
circuits 

Function/ 
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Blood flow 
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nt 

B-mode 
imaging 
Doppler 
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application 

include 2D and 
3D B-mode 

imaging 

Envisaged 
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include 
blood 

pressure 
measureme
nt, bladder 
monitoring, 

needle 
guidance 

and wound 
monitoring, 

etc. 

Envisaged 
applications 

include 
cardiac 

performance 
evaluation 

Development 
stage 

Device 
ready for 

human test 

Device ready 
for human 

test 

Schematics 
only 

Schematics 
only 

Schematics 
only 

Supplementary Table 1 | A summary of integrated ultrasonic devices developed or proposed 1057 
in industry. The device descriptions, form factors, functions or envisaged capabilities, and their 1058 
development stage were listed. 1059 
  1060 
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Supplementary Table 2 | Key components used in the control electronics. All of the 1061 
components are commercially off the shelf.  1062 
  1063 

Component 
designator 

Description 
Manufacture product 

number 

1,2 Multiplexer MAX14866UTM+T 

3 T/R switch MD0101K6-G-ND 
4 Operational amplifier ADA4895-1ARJZ-R7 

5,6 Operational amplifier ADA4897-1ARJZ-RL 

7 Single-pole double-throw analog switch TS5A3159ADBVR 

8 Voltage inverter MAX829EUK 
9 Zener diode BZD27B18P-M3-08 
10 Zener diode BZX100A 

11,12,13 Schottky diode SB01-15C-TB-E 
14,15 MOSFET-N CPH3459-TL-W 

16 Schmitt-trigger inverter SN74LVC1G14DRLR 
17 Microcontroller ATMEGA328P-ANR 
18 Voltage regulator MIC5205-3.3YM5-TR 
19 Voltage regulator AMS1117 
20 Microcontroller with ADC PIC32MZ1024EFH064-I/MR 
21 Voltage regulator MIC5365-3.3YC5-TR 
22 Wi-Fi module ESP32-S3-WROOM-1 
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Supplementary Table 3 | The typical depths and motion magnitudes of different tissue 1064 
interfaces. The interfaces in this study include the arterial walls, ventricular wall, and diaphragm 1065 
dome. 1066 
  1067 

Tissue interface Depth Motion scale 

Radial artery wall 1.00-4.00 mm73-76 0.01-0.06 mm77-79 

Brachial artery wall 3.0-8.1 mm74,80,81 0.04-0.17 mm82 
Common carotid artery wall 4.4-30.4 mm23,24 0.26-0.90 mm79,83,84 
Common femoral artery wall 10-140 mm85,86 0.15 mm-1.00 mm87-89 

Abdominal aorta wall 40-100 mm90 0.57 -2.00 mm82,91 

Ventricular wall 69.9-92.7 mm92 12.2-16.2 mm93 

Diaphragm 100-181.7 mm94,95 
8.0-42.0 mm (normal breath) 

52.7-92.1 mm (forced breath) 96,97 
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Full name Clinical measurements 

Forced vital capacity (FVC) 
Total volume achieved by the quickest possible 

exhalation after a maximal inhalation98 
Forced expiratory volume in one 

second (FEV1) 
Volume achieved in the first second by the quickest 

possible exhalation after a maximal inhalation98 

FEV1/FVC 
Forced expiratory volume measured in the first second as 

a percentage of forced vital capacity98 
Supplementary Table 4 | Summary of typical expiratory volumes and their measurements. 1068 
Clinical measurements of FVC, FEV1, and the derived parameter FEV1/FVC are used for 1069 
diagnosing different respiratory issues. 1070 
  1071 
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Gender n (percentage) 

Male 6 (60%) 

Female 4 (40%) 

Race n (percentage) 

Asian 5 (50%) 

Hispanic or Latino 3 (30%) 

White 2 (20%) 

At time of study Mean ± Standard deviation 

Age (years) 27.78 ± 4.50 

Height (cm) 171.04 ± 10.88 

Weight (kg) 64.26 ± 10.27 

Body-mass index (kg/m2) 21.78 ± 2.52 

Supplementary Table 5 | Demographic characteristics of the participants in this study. They 1072 
vary in gender, race, age, height, weight, and body-mass index, which generate diversity in the 1073 
collected ultrasonic images. 1074 
  1075 
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Supplementary Video 1 | B-mode imaging of the carotid artery and jugular vein. The cross-1076 
sectional structure of the carotid artery and a dilated jugular vein could be identified. The subject 1077 
performed the Valsalva maneuver to dilate the jugular vein during the recording period. 1078 
 1079 
Supplementary Video 2 | Autonomous carotid artery tracking under head yawing. The USoP 1080 
tracked the carotid artery motion while a commercial probe was manually placed adjacent to the 1081 
USoP to image the carotid artery (left). The participant rotated the head to induce displacement of 1082 
the carotid artery. The prediction profile was able to follow the moving artery during head rotation 1083 
(right). 1084 
 1085 
Supplementary Video 3 | Continuous blood pressure waveforms recorded during cycling. A 1086 
point-of-view camera was mounted on the participant’s head to record the motions during cycling 1087 
(left). The carotid pulse waveforms were continuously recorded by the USoP. A smartphone 1088 
application could display tissue motion images, pulse waveforms, heart rate, and blood pressure 1089 
values (right). The tissue motion images illustrated arterial wall positions. The continuous pulse 1090 
waveforms showed the real-time pulsation of the carotid artery. The corresponding heart rate (HR), 1091 
systolic blood pressure (SBP), and diastolic blood pressure (DBP) were displayed simultaneously. 1092 
  1093 
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