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THE BIGGER PICTURE Recent advances in technology have facilitated the efficient collection and detailed
analysis of human health data. The creation of personalized healthcare digital twins (DTs) permits simulations
that predict individual health trajectories and disease progression. Using various health metrics, these DTs
enable a quantitative analysis of vital life processes, provide dynamic health guidance, and refine strategies
for disease treatment. This innovative approach aims to enhance the mathematical understanding of biolog-
ical mechanisms, transform existing clinical practices, and truly personalize medical care.
SUMMARY

The digital twin (DT) is a concept widely used in industry to create digital replicas of physical objects or sys-
tems. The dynamic, bi-directional link between the physical entity and its digital counterpart enables a real-
time update of the digital entity. It can predict perturbations related to the physical object’s function. The
obvious applications of DTs in healthcare and medicine are extremely attractive prospects that have the po-
tential to revolutionize patient diagnosis and treatment. However, challenges including technical obstacles,
biological heterogeneity, and ethical considerations make it difficult to achieve the desired goal. Advances in
multi-modal deep learning methods, embodied AI agents, and the metaverse may mitigate some difficulties.
Here, we discuss the basic concepts underlying DTs, the requirements for implementing DTs in medicine,
and their current and potential healthcare uses. We also provide our perspective on five hallmarks for a
healthcare DT system to advance research in this field.
INTRODUCTION

A digital twin (DT) is a digital and virtual representation of any

physical entity. At the core of DTs is a mathematical model

that uses data gathered from the physical entity to update the

digital counterpart. This iterative approach then allows data to
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be generated from the digital entity indistinguishable from the

physical entity.1 DTs are widely used in the engineering and

manufacturing industries formonitoring andmodeling processes

and optimizing efficiency.2 Examples include jet engine perfor-

mance evaluation and the development of smart cities.3 In the

context of medicine (Figure 1), the physical entity can refer to
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Figure 1. Basics of DTs
A virtual entity, a physical entity, and an input data
flow for real-time collection and monitoring of the
physical entity’s state or physiological functions,
along with an output data flow for real-time inter-
action and communication, such as transmitting
diagnosis and treatment solutions.
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the patient being studied in their real-world existence, incorpo-

rating all molecular, physiological, lifestyle, and environmental

information across time.4 The virtual entity is, therefore, a digital

replica of the patient, or even a virtual space of many digital pa-

tients. These digital replicas have characteristics similar to those

of the patient, which enable predictions and simulations of the

biological processes or disease states using data collected

from the patient. The physical and virtual entities communicate

via a physical-to-virtual connection to allow continuous update

of the parameters that reflect the state of the physical entity.5

In essence, a medical DT represents a virtual representation

where clinical and medical decisions can be tested before appli-

cation in the actual patient.6 Therefore, this enables the real-time

dynamic modeling of biochemical pathways, cells, tissues, dis-

eases, and, ultimately, the entire human body, making personal-

ized medicine a tantalizing reality.

The unique opportunities offered by DTs address the human

population as individuals to provide improved and personalized

therapies and preventions.7,8 The construction of a DT in medi-

cine will require the integration of diverse information such as

clinical data, real-time physiological changes, and the -omics of

an individual. For example, DTs may enable the provision of a

personalized, on-demand risk profile for chronic diseases, offer

lifestyle suggestions to mitigate these risks, deliver warnings

about immediate health risks, and provide alerts for pre-emptive

diagnostic tests.9 Evaluating individual patient responses to a

particular drug and forecasting its efficacy and potential adverse

effects will also be possible. DTs, therefore, represent a faithful

implementation of personalized medicine.10–16

While the application of DTs in healthcare will represent an

essential step toward truly personalized medicine, the significant

heterogeneity inherent in human populations in genomics, physi-

ology, lifestyles, and environment represents a real and significant

hurdle. Significant developments in artificial intelligence (AI), large

languagemodels (LLMs), andwearable devicesmayprovide solu-

tions to someof these hurdles. This article provides an overviewof

the challenges and opportunities offered by these latest develop-

ments and their potential integration into a medical DT platform.
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We then review some examples of DTs

already used in healthcare and medicine.

Finally, we suggest some critical compo-

nents for the ideal medical DT.

CHALLENGES ANDOPPORTUNITIES
TO DT IMPLEMENTATION IN
MEDICINE

Data acquisition
One of the major challenges of a medical

DT is the acquisition of sufficient data to
make meaningful predictions about the physical entity (the pa-

tient). The All of Us research program launched by the U.S. Na-

tional Institutes of Health in 2018 seeks to gather data from at

least 1 million individuals to create one of the largest and most

diverse datasets on health and genomics.17 Furthermore, next-

generation sequencing, high-throughput multi-omics profiling,

and mass spectrometry can evaluate the transcriptome, methyl-

ome, proteome, histone post-translational modifications, and

the microbiome at unprecedented speed and scale.18 Neverthe-

less, the All of Us program focuses on the U.S. population, which

may limit any predictive outputs. Therefore, the blueprint of the

All of Us program should be established in multiple countries

to achieve a truly global and representative cohort.

In addition, to handle large amounts of data, the medical DT

should be able to ensure real-time data collection, integration,

and interoperability among different platforms and systems.

The maintenance of data fidelity is also very important.19 For

instance, constructing a high-fidelity virtual patient is challenging

due to the typically sparse communication rate between the

physical and virtual entities compared with mechanistic pro-

cesses. Therefore, continuous monitoring of static multi-modal

health data, including clinical phenotypes and multi-omics

such as genomics, metabolism, physiology, and lifestyle param-

eters, is required. There is also a need for health data standard-

ization to enable data integration and interoperability among

different DT providers. Furthermore, advances in biosensor

technology have enabled real-time data capture using small, im-

planted biosensors. Small broadband acoustic and mechanical

sensing devices can accurately and continuouslymeasure respi-

ratory airflow, intestinal motility, and other physiological events,

such as the cardiac cycle.20 Self-sustaining wireless charging

using metamaterial surfaces has been explored to enable bat-

tery-less pacemakers.21 Soft wearable sensors with wireless

communication capability will be the next frontier in population

health data acquisition. Such wearable digital health technolo-

gies are developing rapidly to make previously unavailable

data outside of the clinic, such as behavioral and physiological

data, available to clinicians so that additional considerations



Figure 2. Building with AI and metaverse
(A) Building DTs with LLMs.
(B) Combining embodied AI with LLM-powered DTs to construct AI agents.
(C) Metaverse provides a shared space for physical and virtual entities to communicate regarding patient care.
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can be considered in clinical decisions and diagnoses.22 In addi-

tion, facial, fundus, and tongue images can be used to predict

underlying pathologies such as cardiovascular disease and dia-

betes.23,24 These images can be obtained using standard imag-

ing tools. The ultimate application of a medical DT is, therefore,

an integration of these multiscale data to observe and predict

deviations from the normal state of each individual.25 For

example, diabetic patients can be providedwith customized rec-

ommendations on how to improve their health by tracking food

consumption, physical activities, and daily life routines. The

medical DT platform can also search the virtual world for similar

patients to glean peer insights on improving quality of life.

Building with AI and metaverse
Opportunities

To construct a medical DT with high performance in making effi-

cient and inclusive decisions, integrating large-scale AI models

into healthcare is necessary. In addition, high-quality datasets

are required to train these integrated AI modules.26 Data ac-

quired from super cohorts, such as the All of Us program, are

ideal for this purpose. Such integrated AI modules can take

multi-modal data to make clinical diagnoses,7,27,28 predict treat-

ment outcomes,29,30 and interpret radiographical images.31–33

DTs created using large multi-modal AI models are more likely

to mimic their real-life counterparts. Such approaches have

been proposed in oncology,34 cardiovascular health,14 and

neurodegenerative disorders.15 Platforms for collecting and

providing large amounts of multi-modal data have also been es-

tablished.10,35

Recent advances in LLMs, embodied AI, and the metaverse

provide exceptional opportunities to make medical DTs a real-

ity.36 LLMs refer to deep neural networks trained on vast

amounts of text with billions of parameters that can understand
and generate human-like text.37,38 Multi-modal LLMs,28,39,40

which encompass diverse input modes in addition to textual in-

puts within a unified framework, set the stage for a comprehen-

sive approach to healthcare. Addressing these challenges will

require a foundation AI system41 that is capable of integration

and interpretation of multi-modal data and will output with both

holistic and specialist modes. This offers transformative poten-

tial for various healthcare scenarios, from answering health

questions to clinical diagnostics and mortality prediction.42–44

Leveraging LLMs to improve medical DT models will also lead

to better predictions of disease progression and optimized treat-

ment plans (Figure 2A). Through enhanced linguistic compe-

tencies, LLMs can convincingly replicate human-like thought

patterns and emotional responses.45 These models can emulate

behaviors, decision-making patterns, and personality traits pre-

viously perceived as human by tailoring their interactions based

on natural language inputs.46 These unique characteristics will

allow for customization and personalization,47 which align well

with the need to construct medical DT models. LLMs can also

collaborate with medical DT models to provide dynamic and

real-time simulation of physiological processes and patient-spe-

cific health conditions. Moreover, the integration of LLMs with

DTs can enhance the ability to make informed decisions in sce-

narios where the underlying mechanisms are not clear.14,48

Embodied AI learns from interactions with environments

instead of static datasets49 (Figure 2B). In medicine, embodied

AI has been playing important roles in mental healthcare50 and

medical robotics.51 One successful story is the development

and use of embodied AI robots as DTs of psychotherapists

that provide therapy interventions to children with autism spec-

trum disorders.52 The incorporation of LLMs can also seamlessly

integrate various models and modalities, as well as orchestrate

complex tasks such as planning, scheduling, and collaboration.
Patterns 5, August 9, 2024 3
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This will pave the way for the development of versatile, general

purpose embodied AI systems.28 These LLM-powered

embodied AI models are often referred to as AI agents.53 Such

AI agents can perceive and interpret their surroundings, tackle

and resolve problems, and exhibit intelligent behaviors (Figure

2C). This can be achieved autonomously in conjunction with

other AI agents or in synergy with human beings. Combining

DTs with AI agents may redefine patient care, diagnosis, and

treatment.54 By leveraging insights gained from human behavior

and decision-making processes, AI agents can be used to build

virtual patient models, autonomous medical robots, or medical

assistants.12 For example, a DT of a brain tumor patient under-

going surgery can be built, upon which AI agents can simulate

the entire surgical procedure. This enables surgeons to plan

the operation by assessing different entry points, angles, and

depths, which can decrease the risk of damaging healthy brain

tissue. Moreover, the capability of AI agents to orchestrate mul-

tiple DT models is important, as complex clinical tasks often

require the development of more than one DT.55

The metaverse represents a collective virtual shared space

created by converging virtually enhanced physical reality,

augmented reality, and the internet.56 It is a space where digital

and physical worlds intersect and open new possibilities in

various domains, includingmedicine.57 This raises the possibility

that the metaverse could represent a virtual space where health-

care providers and patients can interact with DTs in real-time, al-

lowing for more collaborative and patient-centered care.58 For

example, doctors could use the metaverse to remotely monitor

patients’ DTs and adjust their treatment plans based on real-

time data. In addition, the metaverse could provide a platform

for multidisciplinary teams of healthcare professionals to collab-

orate and share insights, leading to more informed and effective

treatment decisions.59 Implementing DTs within a metaverse

could also facilitate patient engagement and education, empow-

ering patients to take a more active role in their healthcare.60,61

To build consistent digital models for physical objects in the

metaverse,62 generative algorithms showed attractive potential.

Deep generative models, including the Generative Pre-trained

Transformer,63 DALL-E (released by OpenAI),64 as well as the

booming diffusion model,65 have been used to create dynamic

metaverse environments. Deep generative models have also

been extensively used for de novo molecular designs, com-

pound optimization and hit identification.66–68

Challenges

Although deep learning models have played a key role in solving

important problems in computational biology, they are faced

with challenges such as interpretability and generalization.39

The interpretability of AI is one of the key hurdles to building hu-

man trust in a medical DT model, because it requires AI to pro-

vide diagnostic or treatment evidence with high transparency

and interpretability. Many approaches have been tested in this

area. Saliency mapping has been used to demonstrate that net-

works learn patterns, which agrees with accepted pathological

features for Alzheimer’s disease.69 The visualization of convo-

luted neural network ensembles that classify estrogen receptors

has also been used to provide interpretability to breast magnetic

resonance imaging (MRI) predictions.70 Generative discrimina-

tive machines71 can handle confounding variables to increase

confidence in predictions.71 Other approaches include interac-
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tive learning, causal reasoning, counterfactual reasoning, and

mental theory to construct interpretable AI models.72–75

Explainable AI is another challenge. If human intelligence is

complemented by AI and sometimes even overruled, we must

understand the AI decision-making process. Furthermore, inte-

grating expert knowledge and clinical evidence to guide AI

development remains challenging, resulting in some difficulty

in revealing the underlying AI explanatory structures. In addition,

the AI model in a medical DT platform requires high robustness

and generalization when dealing with massive and multisource

data. The robustness refers to the tolerance of the model to per-

turbations in the input data.76 Models with poor robustness are

easily misled by tiny and simple perturbations in the input.77,78

Many methods for improving model robustness have been

applied in the biomedical field, such as an adversarial attack al-

gorithm in gastric cancer subtype analysis models.79–81 Plat-

forms for evaluating the robustness of an AI model have also

been proposed.82 The degradations in the performance of a

model when evaluated on previously unseen data compared

with data it has already seen is known as generalization.83

Data augmentation using generative adversarial networks can

generate a large amount of training data to solve the problems

of insufficient data and uneven distribution.83,84 Many generative

adversarial networks have been proposed for data augmentation

to improve the generalizability of AI models, including Cycle-

GAN,85 pix2pix GAN,86 and Self-Attention GAN.87

The performance of AI systems is known to deteriorate on

older tasks during training, which is called catastrophic forget-

ting. This is a particular issue in implementing medical DTs

because continuous learning is necessary. Lifelong learning is

a paradigm that allows continuous learning, and to retain prior

experience with old tasks while learning new tasks.88,89 Such ap-

proaches should be a part of medical DT platform so they can

adapt to the real world. Lifelong learning has been explored in

the processing and interpretation of medical images,90 and

elastic weight consolidation has been applied to learning normal

brain structure and white matter lesion segmentation.91 Reduc-

tion of catastrophic forgetting has also been successful in car-

diac ultrasound view classification and pneumothorax detec-

tion.92 It has also been used in dealing with modality and task

transitions caused by changes in protocols, parameter settings,

or different scanners in a clinical setting.93 Research on

improving the lifelong learning ability of models will focus on

the following aspects: task transfer and adaptation, overcoming

catastrophic forgetting, exploiting task similarity, task-agnostic

learning, noise tolerance, and resource efficiency and sustain-

ability.94

Computing power

DT platforms require tremendous computing power.95 Quan-

tum computing is well suited to large-scale data processing, in-

formation modeling process, and real-world and virtual world

communication processes.96 In addition, quantum imaging

techniques, combined with quantum sensors and quantum

dots, are likely to usher in a new era of medical imaging,97

and it is expected that quantum MRI machines will produce

extremely precise imaging, with the potential to visualize indi-

vidual molecules.98 Combined with AI, quantum computing

can also be applied to interpret diagnostic images, identifying

anomalies with greater precision than the human eye.99
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Quantum sensors can also be applied to acquire multi-modal

data, particularly in wearable devices, to allow for highly sensi-

tive and accurate monitoring of a physical entity. Quantum dots

can be used in conjunction with quantum computing to person-

alize drug design, potentially enabling tailor-made drugs for

each patient, maximizing efficacy andminimizing adverse reac-

tions.61 Similar approaches can also be used to develop radia-

tion plans to kill cancer cells without harming healthy cells.100 In

neurology, quantum computing can simulate complex neural

networks, aiding in the understanding and treatment of neuro-

logical disorders. This can be applied with DTs of the brain to

accurately model the behavior of neurons and synapses, lead-

ing to more informed treatment strategies and a better under-

standing of disorders like Alzheimer’s disease or Parkinson’s

disease. Quantum computing and DTs can also be used to opti-

mize hospital operations. Quantum algorithms can analyze pa-

tient flow, resource use, and staff scheduling datasets. This en-

ables administrators to optimize the allocation of resources,

decrease waiting times and enhance overall operational effi-

ciency in healthcare facilities. Nevertheless, significant devel-

opments are needed before quantum methods can be scaled

up for these approaches described above. Current challenges

include the need for error correction, the stability of qubits, as

well as the development of scalable quantum hardware.

Accessibility to data

While acquiring data from a large population makes it possible to

realize the application of medical DTs, the challenge of data se-

curity, privacy, and confidentiality are critical considerations.

New rules and regulations prohibit institutions from exchanging

medical data without patients’ approval, resulting in the occur-

rence of data silos. Therefore, creative methods are required to

coordinate data retrieval while protecting privacy.101 To address

these challenges, federated learning (FL) is a promising technol-

ogy to boost data collaboration across multiple centers rather

than sharing raw data. FL sidesteps privacy barriers by allowing

clients to updatemodels locally and uploadmodel parameters to

the server until the global model gains stable results.102 Feder-

ated multi-modal learning has been implemented in predicting

future oxygen requirements of symptomatic patients with coro-

navirus disease 2019 (COVID-19).103 Cross-silo FL is also an

increasingly attractive solution for predicting heart disease hos-

pitalizations through electronic health records,104 while cross-

device FL has been used to handle continuous health data

fromwearable devices to deliver personalized health insights.105

Swarm learning is another approach that builds a model inde-

pendently on private data using blockchain technology.106,107

This can track and mediate access to health and genomic re-

cords. Additional challenges to accessibility and privacy lie in

data heterogeneity, safety, and model communication effi-

ciency. Data heterogeneity can result in client shifts and degrade

the convergence of predictive outputs.108 In addition, inversion

attacks can reconstruct images from model weights or gradient

updates with impressive visual details. Poisoning attacks dam-

age the training of global models by deliberately uploading

malicious local models, requiring additional privacy-enhancing

techniques.101 Furthermore, convergence times for FL are

limited to communication bandwidths, which affect communica-

tion delay times, necessitating the development of communica-

tion-efficient FL.109
Additionally, the privacy by design approach can enhance

data security and privacy at the infrastructure level by imple-

menting robust authentication and access control measures.

This includes encrypting data to prevent unauthorized access,

using secure protocols like HTTPS or VPNs to protect sensitive

data during transmission, anonymizing or pseudonymizing sen-

sitive information, keeping personally identifiable data locally,

and establishing a robust system for regular anomaly detection

and prevention. Adapting blockchain technology in a medical

DT platform can also mitigate the problem of data tampering.

The decentralized nature of blockchain technology provides

transparency in consent management and allows patients to

see who has access and for what purposes.110 This will facilitate

data audit and allow data changes to be traced. Moreover, self-

executing agreements based on predefined rules and conditions

called smart contracts can convert physical data governance

and regulatory requirements into digital processes. Additionally,

tokenization capabilities of blockchain technology can facilitate

individual data ownership. In summary, addressing data secu-

rity, privacy protection, and data ownership is crucial in

designing and implementing medical DT technology. This pro-

tects sensitive healthcare information, prevents unauthorized

access or data manipulation, and fosters trust among stake-

holders.9,111

Ethics

Several ethical issues related to the extensive collection of sen-

sitive health information arise in any discussions of amedical DT.

Therefore, the protection and governance of such collected data

are among the top priorities. For example, a determined adver-

sary can hack into a DT repository to potentially harm entire pop-

ulations. The issue of multiple use of the collected data also

needs to be properly addressed and governed, to alleviate the

inevitable concern that accumulated sensitive data could be

used for purposes other than informing healthcare decisions,

such as research, commercialization, or surveillance.

The provision of informed consent will also be critical, particu-

larly with regard to transparency about how the data will be used

andwhowill have access to the data.While the benefits and risks

of participating in medical DT projects can be clearly explained

to patients in detail, informed consent for collecting individual-

ized information from wearables is more difficult. Furthermore,

the extent of multi-modal data involved in the meaningful imple-

mentation of medical DTs raises privacy issues and patient

confidentiality. One major ethical hurdle is re-identification

from anonymized data. This is a particular problem when highly

parametrizedmodels such as neural networks are used, as a sig-

nificant fraction of the training data can be reconstructed from

the trained neural networkmodel.112 Indeed, a recent systematic

review found re-identification rates are high.113

Data acquired from medical DT platforms will be used to

inform clinical decisions, many of which may be life altering.

Where the burden of accountability lies is critically important

regarding liability in case of errors or adverse outcomes. In addi-

tion, the accumulated data may contain unequal representations

of certain demographic groups. This creates a void in the data for

machine learning and affects the performance of the medical DT

platform with respect to minority groups. The clinical decisions

for patients in such groups, or those with a lower socioeconomic

status, may therefore contain a certain degree of bias and
Patterns 5, August 9, 2024 5
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inequality. Furthermore, it can be envisaged, at least initially, that

medical DT technologies will be implemented in settings where

the more affluent will benefit. This may exacerbate the inequality

gap and bias. The result may be a disproportionate health

improvement for high versus low socioeconomic status patients.

Unless addressed, these concerns will severely dampen the

enthusiasm for the widespread implementation of a medical

DT platform.

One additional concern is data ownership. Currently, consent

for data provision is received from the data producers, which

has led to a digital economy built on centralized data owned

by large tech corporations. This system has resulted in a sce-

nario where the data creators (the patients or participants in

research) have limited control and oversight of downstream

processes. Indeed, tech companies routinely trade and sell

personal data for profit. Therefore, in addition to the privacy,

ownership, and security issues discussed above, there is also

an economic and profit issue that complicates the ethics

around medical DT initiatives. Therefore, a fundamentally

different approach to a data management philosophy may be

needed for medical DT applications. One bold approach may

be to empower individuals with full data ownership. This means

medical DT applications will provide the data creator the right to

keep, sell, donate, or trade their personal data for research or

drug discovery. This can be implemented using smart contracts

with built-in economic compensation logic. Patients can be

compensated when they choose to sell or trade their anony-

mized data based on their nuanced preference for privacy.

Mechanisms to compensate individuals for their health data

can also incentivize targeted health data collection for medical

research and drug discovery. Such approaches can improve in-

dividual digital rights when AI and big data become indispens-

able components of modern medicine.

POTENTIAL IMPLEMENTATIONS OF DTs IN MEDICINE

Health and disease management
Individualized homeostasis monitoring

The classification of experimentally or clinically defined normal

or healthy states differs slightly in each individual and cannot

be extrapolated to large populations.25 Currently, treatment

personalization relies on low-resolution data and a limited pic-

ture of the clinical history of a particular person. For example,

there is not yet a clear understanding of a normal blood pres-

sure. The reasons may be due to the relatively sparse blood

pressure measurements and the lack of assessment of the

impact of physiological and behavioral patterns in any individ-

ual.114 Without a personalized definition of normal, it is difficult

to detect deviations from normal that ultimately constitute the

disease state. A medical DT can define normal in each individ-

ual through continuous feedback of information between the

patient and their DT. Deviations from this normal state define

disease, and treatments can be leveraged to predict interven-

tion outcomes.

Cancer management

Medical DTs can also realize the promise of precision oncology

by integrating individual proteome and clinical data with popula-

tion data.115 Such models continuously learn from new data, as

well as individual patient care decisions from physicians, and
6 Patterns 5, August 9, 2024
can be used for real-time adjustment of treatments. This is

particularly important in cancer recurrence or drug resistance,

and patients may require different surgical, chemotherapy, or ra-

diation regimens depending on the innate resistance of their

particular tumor. Medical DT platforms can predict the onset of

resistance and offer alternative treatment regimens based on

the genome of individual patient tumors. Chemotherapy regi-

mens also can be personalized depending on the patient’s meta-

bolism to mitigate toxic side effects. Such models have shown

promise in predicting treatment responses in triple-negative

breast cancer.116 Amedical DT platform can also be used to pre-

dict metastatic disease through structured, consecutive radi-

ology reports.117,118

Cardiovascular disease

Improved survival and quality of life in cardiovascular disease are

achieved by effective acute care and guideline-based risk factor

management strategies.119 DTs can be created from traditional

simulation models and precursor models at different scales to

create real-time, cyber-physical systems to provide tailored

therapies.14,120 For example, an inverse analytic DT system

can detect abdominal aortic aneurysm and its severity scores

using neural networks.121,122 The Siemens Digital Heart is used

to evaluate the success of cardiac resynchronization therapy

by implanting virtual electrodes.

Immune responses

A medical DT platform can also play an essential role in autoim-

mune disorders and infectious diseases. This will require multi-

modal, granular, and integrated information at the molecular,

cellular, tissue, organ, and body levels. Such platforms can be

used to predict the rejection of transplanted organs and the po-

tential responses to immunosuppressive agents. It will also be

useful in infectious diseases, particularly during a pandemic, to

identify individuals who are susceptible to certain infections or

at risk of fatal cytokine storms. It can also be used to predict pro-

tective immune responses and immune memory as a result of

vaccination.

The design, manufacture, and implementation of

medical devices

The design of customized medical devices is a great challenge.

Creating DTs of different anatomical structures in the body can

simplify the design and implementation of customized medical

devices. Dassault Systèmes, based in France, developed a

model of the structure and function of the human heart using

MRI and electrocardiograms. This Living Heart Project has an

active collaborative research agreement with the U.S. Food

and Drug Administration to evaluate the use of the model in the

insertion, placement, and assessment of pacemaker leads,

and other cardiac medical devices. Further work from this

collaboration will use DT technologies to improve the efficiency

of medical devices in clinical trials and leverage simulation

data as a source of evidence.

Surgery

Surgical interventions offer curative potential for many diseases

without effective pharmacological treatment alternatives. How-

ever, the surgical procedure and some of the interventions given

during the perioperative period may adversely affect patient out-

comes. DTs can be very useful in the perioperative period for the

planning and simulation of the surgery itself, as well as for

predicting surgical outcomes.123 A DT platform will also be



Figure 3. Hallmarks of the DT platform
Any healthcare DT should include basic physical-
virtual two-way communication, a metaverse of
representative data, embodied AI agents based on
LLM interfaces, reliable learning and prediction of
multi-modal data, real-time patient monitoring,
secure data storage, access to patient data, and
adherence to ethical standards.
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beneficial for assessing the tolerance of surgery outcomes with

respect to small human-induced variations during the surgical

procedure, such as during complex heart surgeries like trans-

catheter aortic valve replacements. Digital orthopedics has

generated a DT of the foot and ankle, allowing surgeons to simu-

late surgery results and optimize surgical planning.

Hospital and nursing administration

Outside of the biological and clinical settings, DT technologies

can impact the administration of large healthcare institutions.

DT platforms created from electronic medical records and live

physiological data from wearable devices can be leveraged to

provide optimized and personalized medical and nursing ser-

vices. The Verto Flow platform integrates patient data from

various sources using AI algorithms, which healthcare profes-

sionals can use to optimize patient care. The ThoughtWire plat-

form can simulate the health status of a patient, alerting doctors

when a patient is likely to have a life-threatening complication,

and offer suggestions based on predictions to mitigate the

risks.124 DTs of entire hospital workflows are also being

explored by GE and Siemens Healthcare, to optimize surgery

schedules and simplify staffing requirements. This can improve

overall hospital efficiency and shorten patient waiting times.

Project BreathEasy, developed by OnScale, is a DT-inspired

lungmodel to assist clinicians in the prediction of the ventilation

requirements in COVID-19 patients. This is particularly impor-

tant in low-resource regions, where ventilators are in short

supply.

Synthetic biology circuits

The use of nature in engineering and industry holds immense

potential, with synthetic biology emerging as a rapidly growing

field with significant economic prospects. Advances in DNA syn-

thesis and sequencing technology have greatly decreased the

costs of constructing synthetic DNA genomes. Incorporating

advancedmicrofluidics allows for the creation of cell-free biolog-

ical components. Indeed, synthetic biology closely aligns with

the original concept of DTs. For example, the development of

an artificial human heart required substantial DT input.125 Incor-

porating DT technology in synthetic biology could create auto-
nomic biological modules for applications

like smart organs, drug production, or

renewable energy. These biological mod-

ules can communicate with virtual entities

on themedical DT platform using synthetic

genetic circuits and optogenetic tools. The

potential for biological computers sug-

gests a future where control of the virtual

entity is integrated within the physical en-

tity. Advances in cellular state estimation

and control methods can lead to intelligent
designs for biological components, furthering the discovery of

new technologies in the control and integration of cellular

processes.

A MEDICAL DT: REQUIREMENTS TOWARD TRUE
PERSONALIZED MEDICINE

In an era marked by groundbreaking technological advance-

ments, healthcare is on the brink of a revolutionary transforma-

tion with the integration of DT technologies. This paradigm

shift toward personalized, data-driven healthcare is encapsu-

lated in a medical DT platform characterized by five key hall-

marks (Figure 3).

Hallmarks of a medical DT
Representative data repository as a metaverse

At the core of a medical DT platform lies the concept of a meta-

verse, a virtual space of large-scale and high-fidelity digital

models and entities that can be used to adjust treatment,

monitor response, and track lifestyle modifications (Figure 4).

This metaverse should also be where patient-specific DTs and

their multi-modal biological omics and medical data coexist,

and enables the seamless sharing and interaction of healthcare

data. It will also be a dynamic ecosystem that integrates a pa-

tient’s comprehensive and multi-modal input to find a matching

virtual counterpart and offer individualized treatment and pre-

vention recommendations. The recommendation can be further

personalized to the patient based on virtual profile latent-space

prototyping if necessary.126

Real-time monitoring of the physical entity

The second hallmark of a medical DT platform is the real-time

monitoring of physical entities. Patient-specific avatars within

the metaverse closely mirror patients’ real-world health condi-

tions. They can monitor vital signs, physiological parameters,

and treatment progress. This real-time monitoring ensures

timely interventions and immediate response to anomalies

and empowers patients with continuous access to their health

data.
Patterns 5, August 9, 2024 7



Figure 4. Representative data repository as a metaverse
(1) The DT platform integrates extensive multi-modal biological omics and medical data from patients, generating algorithms for individualized guidance in
prevention, risk assessment, and therapies.
(2) The platform uses comprehensive patient input tomatch their virtual counterpart in the deeply phenotyped DT database, providing personalized treatment and
prevention recommendations.
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Reliable predictions by embodied AI agents

Embodied AI agents are the third hallmark of a medical DT plat-

form. They are the digital brains of the platform, constantly

analyzing vast amounts of data to offer reliable predictions and

insights. These AI agents draw from comprehensive datasets

within the metaverse, including historical health data, treatment

outcomes, and patient-specific parameters. By simulating

different scenarios, they can predict how a patient’s health will

evolve, the effectiveness of potential treatments, and the proba-

bility of developing specific conditions. This proactive approach

transforms healthcare from reactive to predictive, enabling early

intervention and optimized treatment strategies.

Secure data access

The fourth hallmark of a medical DT platform is a robust

emphasis on secure data access, where patient data are pro-

tected with the highest security and encryption standards. Pa-

tients have control over who can access their data, and health-

care providers are granted secure, role-based access to

relevant patient information. This secure data access safeguards

patient privacy and complies with stringent data protection reg-

ulations.

Ethical issues

Ethics is the fifth and perhaps themost vital hallmark of amedical

DT platform. It upholds the principle that every healthcare

advancement must align with patients’ best interests. This plat-

form adheres to the highest ethical data use, research, and care

delivery standards. It ensures that patient consent is always ob-
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tained and patient rights are respected. The ethical commitment

extends to using healthcare data to improve patient care and the

broader healthcare community while maintaining transparency

and trust.

Development of a medical DT platform
The medical DT platform can be realized using a four-stage

development roadmap based on increasing functionality and

complexity (Figure 5).

Stage 1: Static twins

The simplest DT model starts with a patient model template

based on retrospective data and a continuous learning process.

The static twin is a traditional simulation and modeling exercise,

where analysis is primarily performed offline and characterized

by hypothesis-driven mathematical modeling. The static twin is

obtained by modeling the state of a physical system through

data collected from sensors.127 Static twins can, therefore, be

considered as data-driven mathematical models of patients.

One example of static twins is the HeartNavigator developed

by Philips.128

Stage 2: Progressive twins

The next step in the evolution of the DT platform should incorpo-

rate observational data to represent the patient’s current state

and reliably forecast future state transitions. It will need existing

techniques for simulation, model inference, data assimilation,

and high-performance computing to build and test real-time, dy-

namic models on relatively large scales. Progressive twins



Figure 5. Development of the DT platform
Static twins serve as the starting point, where physical entities are digitized, enabling periodic updates to their virtual counterparts. By integrating temporal or
progressive information, progressive twins can reflect the evolution of the physical entity and reliably forecast future state transitions. With the development of a

(legend continued on next page)
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integrate temporal or progressive information to construct a dy-

namic statistical machine learningmodel, which reflects the evo-

lution of the physical entity and reliably forecasts future state

transitions. Progressive twins are, therefore, in silico representa-

tions that dynamically reflect molecular, physiological, and dis-

ease states across time (e.g., aging). An example of progressive

twins is the development of three-dimensional brain organoid

cell culture models to recapitulate various aspects of human

brain physiology in vitro and replicate basic disease processes

of Alzheimer’s disease, amyotrophic lateral sclerosis, andmicro-

cephaly.129

Stage 3: Operational twins

One of the critical features of the DT concept is the physical-to-

virtual connection. Operational twins are real-time, cyber-phys-

ical systems that use a continuous connection to monitor state

changes in the physical environment. Therefore, operational

twins represent a real-time interaction between the physical

and virtual entities in a closed loop. For example, an automated

insulin injector can be built where changes in the DT of the

patient’s blood (data from glucose monitor) can be continu-

ously monitored to determine accurate insulin dose injections

throughout the day instead of relying on a fixed injection

schedule.

Stage 4: Autonomous twins

In the ultimate stage of the DT platform evolution, known as the

autonomous twins, the digital and physical worlds are merged,

representing the pinnacle of physical-virtual co-existence. The

self-sustaining virtual worlds operate independently while inter-

acting seamlessly with the physical world. This integration can

create a metaverse populated with countless autonomous,

high-resolution virtual entities. For example, an autonomic DT

brain could be developed, building on in silico representations

and evolving autonomously. This can dynamically reflect the bio-

physical information of an actual brain over time, enabling effec-

tive enhancement interventions. Autonomous twins, combined

with advanced virtual reality platforms, can also revolutionize

surgical practice by providing realistic performance feedback

on simulated procedures tailored to each patient.123 Autono-

mous twins can offer valuable insights and guidance for real-

world decision-making. The ultimate form of autonomous twins

could enable the realization of precision medicine by acceler-

ating the discovery of medical phenomena and disease pro-

cesses, shortening the timeline for drug discovery, improving

surgical outcomes via virtual operations, and simulating disease

progression statistics.

Applications of a medical DT
Creation of personalized treatment plans

A medical DT platform can use a cancer patient’s medical his-

tory, family history, genetic information, and lifestyle factors

(diet, exercise, and exposure to environmental toxins) to create

an AI agent. This AI agent, using an LLM, captures the patient’s

unique physiological responses and medical conditions,46

leveraging external tools for diagnosis and treatment.130 It can
closed-loop, iterative improvement framework, operational twins enable real-time
understanding of biological phenomena and the achievement of specific design o
virtual worlds merge, representing the highest level of physical-virtual co-existen
information and knowledge for their associated physical entities within the DT pl
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perform self-diagnosis by accessing the latest medical research,

clinical trials, and treatments.43 It can consider various treatment

options, such as chemotherapy, radiotherapy, immunotherapy,

and targeted therapy and assess their potential effectiveness.

The AI agent can also analyze the patient’s genetic data to iden-

tify mutations or biomarkers that could be indications for or con-

traindications to specific therapies. The AI agent interacts with

the patient and the healthcare provider to address concerns

promptly. As new data and feedback are received, the platform

uses reinforcement learning to refine its models,131 improving

the accuracy and effectiveness of personalized treatment plans

over time. Once developed, this agent can be easily customized

for other patients based on their personal data.

Remote patient monitoring

Patients with chronic illnesses, such as hypertension or dia-

betes, can be equippedwith awearable device that continuously

streams their vital signs and health data to their virtual counter-

parts within the metaverse. The embodied AI agent can analyze

the incoming data to detect any irregularities or signs of deterio-

ration. If a critical situation arises, the systemcan alert the patient

and/or healthcare provider. It can even initiate a predefined

emergency response. This proactive approach to remote moni-

toring allows patients to maintain their health from the comfort of

their homes or anywhere while receiving immediate interventions

when necessary.

Virtual clinical trials

Clinical trials are essential for testing newmedications and treat-

ments. Amedical DT can revolutionize clinical trials by simulating

patient responses in the metaverse. Researchers can use the DT

platform to represent virtual patients with specific conditions and

characteristics. These virtual patients are subjected to various

treatment regimens, minimizing the risks and ethical concerns

associated with actual patients. The embodied AI agents within

the DT platform can analyze the treatment outcomes, providing

valuable insights into the potential efficacy and safety of the

treatments. This approach expedites the drug development pro-

cess, reduces costs, and accelerates the availability of new ther-

apies to actual patients.

Hospital administration

Integrating DT platforms in hospital administration can substan-

tially improve management of healthcare facilities. These tech-

nologies create virtual representations of hospital infrastructure,

allowing administrators tomonitor andmanage operations in real

time. For instance, a virtual operating room can provide insights

into equipment use, maintenance needs and staff workflows,

optimizing space layout and resource use. Clinical workflows

and administrative processes can be analyzed and optimized

within the virtual environment. Nursing administrators can simu-

late scenarios to identify bottlenecks and streamline workflows.

Virtual entities of nursing staff offer real-time insights into avail-

ability, skills, and workload. The DT platform can also simulate

patient flows to optimize bed management and predict conges-

tion points. Additionally, the metaverse serves as a training

ground for medical staff, allowing them to practice critical care,
interaction between physical and virtual entities. This facilitates both a deeper
bjectives in biology and healthcare. In the final stage, the digitized physical and
ce, or autonomous twins. Autonomous virtual entities continuously generate
atform.
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patient interactions, and new technologies in a risk-free envi-

ronment.

CONCLUSIONS

The DT concept has proven invaluable in industrial applications,

from manufacturing to the safe operation of complex systems.

Its potential in developing in vitro and in vivo research models

is also evident in biomedical research. However, its most trans-

formative application lies in clinical medicine, where DT technol-

ogies could realize personalized medicine. By combining high-

throughput genetic and molecular approaches, single-cell and

whole-genome sequencing, big data, cloud-based electronic

medical records, and AI, DTs can deliver modern healthcare.

Beyond offering personalized treatment regimens, DT tech-

nologies canmonitor and predict adverse drug reactions or inter-

actions. Their greatest impact, however, will be in the day-to-day

health monitoring of individuals. The ability to precisely predict

health perturbations and provide mitigation suggestions will

advance the detection and diagnosis of chronic, non-communi-

cable diseases.

Despite the potential, implementation faces obstacles such as

privacy issues, data security, and the risk of malicious attacks.

Additionally, the accessibility of AI findings and interpretations

needs improvement. Nevertheless, the Consortium believes

the transformative potential of DTs in healthcare is too significant

to be hindered by these challenges. We urge national scientific

policymakers and funding bodies to increase resources in this

crucial area of research.
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