Strain engineering and epitaxial stabilization of halide perovskites

https://doi.org/10.1038/s41586-019-1868-x

Received: 12 April 2019

Accepted: 19 November 2019

Published online: 8 January 2020

Yimu Chen^{1,8}, Yusheng Lei^{1,8}, Yuheng Li¹, Yugang Yu², Jinze Cai², Ming-Hui Chiu³, Rahul Rao⁴, Yue Gu², Chunfeng Wang¹, Woojin Choi⁵, Hongjie Hu², Chonghe Wang¹, Yang Li¹, Jiawei Song², Jingxin Zhang², Baiyan Qi², Muyang Lin¹, Zhuorui Zhang¹, Ahmad E. Islam⁴, Benji Maruyama⁴, Shadi Dayeh^{1,2,5}, Lain-Jong Li^{3,6}, Kesong Yang¹, Yu-Hwa Lo^{2,5} & Sheng Xu^{1,2,5,7*}

Strain engineering is a powerful tool with which to enhance semiconductor device performance^{1,2}. Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties³⁻⁵. Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization⁶⁻⁸, electrostriction⁹, annealing¹⁰⁻¹², van der Waals force¹³, thermal expansion mismatch¹⁴, and heat-induced substrate phase transition¹⁵, the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable latticemismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of α -formamidinium lead iodide $(\alpha$ -FAPbl₃) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial α -FAPbI₃ thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α -FAPbl₃. Strained epitaxy is also shown to have a substantial stabilization effect on the α -FAPbl₃ phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an α -FAPbl₃-based photodetector.

 α -FAPbI₂ is epitaxially grown on a series of mixed methylammonium lead chloride/bromide (MAPbCl_xBr_{3-x}) single crystalline substrates by the inverse temperature growth method¹⁶. The resulting MAPbCl_xBr_{3-x} substrates, with different compositional ratios and thus lattice parameters, are grown by solutions with different Cl/Br precursor molar ratios (Supplementary Fig. 1)¹⁷. We note that the strain in the epilayer is determined not only by the lattice mismatch, but also by the relaxation mechanisms. Lattice distortion relaxes the strain, so the region near the heteroepitaxy interface has the highest strain, which gradually drops at regions distant from the interface. The total elastic strain energy increases as the film grows thicker, until it eventually crosses the threshold energy for structural defect generation, and dislocations will form to partially relieve the misfit¹⁸. A slow growth rate of the epilayer is chosen, as a higher rate will increase the defect concentration in the epilayer. The crystalline quality of the substrates is carefully optimized, as the defects in the substrates can propagate into the epilayer (Extended Data Fig. 1).

Heteroepitaxial growth leads to controllable film thickness, preferential growth sites and orientations, compatible fabrication protocols

with existing infrastructures and scalable large-area device applications. Figure 1a shows optical images of a series of MAPbCl_xBr_{3-x} substrates with a layer of epitaxial α -FAPbI₃ film on the top. The epilayer has a uniform thickness with a well defined film–substrate interface (Fig. 1b). The film topography can reveal the growth mechanism and sometimes the defects caused by strain relaxation. On the one hand, a sub-100 nm α -FAPbI₃ thin film shows a clear interface (Fig. 1b), and a well defined terrain morphology, with a step height close to the size of a α -FAPbI₃ unit cell, indicating layer-by-layer growth behaviour of the epitaxial α -FAPbI₃ (Extended Data Fig. 2a, b). A 10-µm film, on the other hand, shows non-conformal growth, indicating strain relaxation by dislocation formation (Extended Data Fig. 2c, d).

The crystallographic relationships between the MAPbCl_xBr_{3-x} substrates and the epitaxial α -FAPbI₃ thin films are illustrated by highresolution X-ray diffraction (XRD) (Fig. 1c). In their freestanding form, both α -FAPbI₃ and MAPbCl_xBr_{3-x} have a cubic structure^{19,20}. The lattice parameters of freestanding α -FAPbI₃ and MAPbCl_xBr_{3-x} substrates (both with *Pm3m* space group) are calculated to be 6.35 Å (Supplementary Fig. 1) and 5.83–5.95 Å, respectively. The ratio *x* for each

¹Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA. ²Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA. ³Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. ⁴Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, USA. ⁵Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA. ⁶School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia. ⁷Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. ⁸These authors contributed equally: Yimu Chen, Yusheng Lei. *e-mail: shengxu@ucsd.edu

Fig. 1 | **Epitaxial** α -**FAPbl**₃ **thin films and structural characterizations. a**, Optical images of the as-grown epitaxial α -FAPbl₃ thin films. The high transparency of the substrates and the smooth surfaces of the thin films demonstrate their high quality. Scale bars, 4 mm. **b**, A cross-sectional scanning electron microscope (SEM) image of the epitaxial thin film with controlled uniform thickness. Scale bar, 2 µm. Inset, magnified SEM image of the heterostructure showing a well defined interface. Scale bar, 200 nm. **c**, High-resolution XRD ω – 2 θ scan of the (001) peaks of the epitaxial samples on different substrates showing the increasing tetragonality with increasing lattice mismatch. **d**, Reciprocal space mapping with (104) asymmetric reflection of the α -FAPbl₃, for different lattice parameter as well as an

composition is then calculated to be 0-1.50, according to the Vegard's Law (Supplementary Table 1). As x increases, the MAPbCl_xBr_{3-x} (001) peaks shift to a higher 2θ angle, indicating a decrease in the lattice parameters of the substrate and therefore an increase in the lattice mismatch (Fig. 1c and Supplementary Table 2). Meanwhile, the α -FAPbI₃ (001) peak shifts to a lower 2 θ angle, indicating an increase in the out-of-plane lattice parameter as the in-plane compressive strain increases. When x exceeds 1.50, the strain energy dramatically increases, and the epitaxial growth becomes less thermodynamically favourable. α -FAPbI₃ then randomly crystallizes on the substrate (Supplementary Fig. 2). Peak broadening of the epitaxial α-FAPbI₃ is therefore induced by the epitaxial strain and the reduction in film thickness, instead of by the strain-induced dislocations or the strain relaxation (Supplementary Fig. 3). Figure 1d shows the reciprocal space mapping of strain-free and strained α -FAPbI₃ thin films with different lattice mismatch with the substrate. An increase of tetragonality of the lattice is evident as the compressive strain increases. increase in the out-of-plane lattice parameter with larger compressive strain. Q_x and Q_z are the in-plane and out-of-plane reciprocal space coordinates. **e**, Confocal Raman spectra of the epitaxial layer at different strains. We attribute the evolution of the shape and intensity of the peak with strain to the increase in lattice tetragonality under higher strain. We note that the broad peak at approximately 250 cm⁻¹ is attributed to the Pb–O bond induced by laser oxidation. **f**, Fitting analysis of the Raman peaks. The peak at 136 cm⁻¹ from the strain-free sample (black line) is attributed to the Pb–I bond. With increasing compressive strain, the peak gradually blueshifts as the bond becomes more rigid, and finally splits into a main peak that blueshifts (owing to in-plane bond contraction) and a shoulder peak that redshifts (owing to out-of-plane bond extension). (a.u., arbitrary units).

The corresponding strain levels of the α -FAPbl₃ in those three cases are calculated to be 0%, -1.2% and -2.4%, respectively, on the basis of the lattice distortion (where the negative sign denotes compressive strain). The Poisson's ratio is determined to be around 0.3, which is consistent with the reported value²¹.

We also studied the structure of α -FAPbI₃ at different strains (between 0% and -2.4%, on different substrates) by Raman spectroscopy (Fig. 1e). Control experiments exclude any Raman signals from the substrates (Supplementary Fig. 4). The peak at around 136 cm⁻¹ in Fig. 1e, which originated from the stretching of the lead-iodine bond²², increases in intensity and broadens in width as the strain increases. The cubic structure of the strain-free α -FAPbI₃ is less Raman-active, and the detectable signal is usually broad and weak. When in-plane compressive strain increases, the inorganic framework gradually gains tetragonality and produces a stronger Raman signal with a clearly distinguishable shape. Interestingly, at around -1.4% strain, the peak at 136 cm⁻¹ starts to split into two: a main peak at about 140 cm⁻¹ and a

Fig. 2| Optical properties. a, Photoluminescence spectra of α -FAPbI₃ at different strains. The redshift of the photoluminescence peak with increasing strain is due to bandgap reduction under compressive strain, consistent with the first-principles calculations. **b**, Focal-point-dependent confocal photoluminescence spectra of a 3-µm-thick film. When the focal point of the laser (indicated by the red point in the schematic; inset) moves towards the epitaxial interface, the photoluminescence emission peak shifts from about 1.523 eV to about 1.479 eV, owing to the large compressive strain close to the interface. **c**, Temperature-dependent photoluminescence spectra of a –2.4% strained and a strain-free sample. The bandgap of the strain-free sample shows

a stronger temperature dependence than the strained sample, indicating that the substrate can reduce the lattice deformation that is caused by the temperature change. **d**, UPS spectra of a -2.4% strained and a strain-free sample. The Fermi level and the VBM of the samples can be extracted from the intersections of the curves with the horizontal axis, marked by the solid and dashed vertical lines, respectively. The results reveal that compressive strain increases the VBM more than it does the CBM, owing to the enhanced interaction of lead 6s and iodine 5p orbitals under the compressive strain. Inset, the schematic band diagram of the -2.4% strained and strain-free samples. CB, conduction band; VB, valence band.

shoulder at about 133 cm⁻¹ (Fig. 1f). When the strain is further increased to -2.4%, these two peaks shift to 143 cm⁻¹ and 130 cm⁻¹, respectively. We attribute the blueshift of the main peak to the compression of the in-plane lead–iodine bond, and the redshift of the shoulder peak to the stretching of the out-of-plane lead–iodine bond. This result is also supported by the simulated Raman spectra by first-principles calculations (Supplementary Fig. 4c, d). We also studied the Raman spectra of α -FAPbI₃ of various thicknesses on MAPbCl_{1.50}Br_{1.50} (Supplementary Fig. 4f). The results are consistent: a strong, sharp peak is detected from a sub-100-nm film with -2.4% strain, and a weak, broad peak is detected from a film of around 2 µm, where the misfit strain is relaxed near the film surface.

Photoluminescence spectra (Fig. 2a) reveal changes in the bandgap of sub-100-nm epitaxial α -FAPbI₃ thin films under different strains (between 0% and -2.4%, on different substrates). The photoluminescence peak of α -FAPbI₃ gradually shifts from about 1.523 eV at 0% strain to about 1.488 eV at -2.4% strain, corresponding to a reduction of about 35 meV in the bandgap. We exclude the possible contributions to this photoluminescence redshift from thickness-dependent bandgap^{23,24}, reabsorption²⁵ or halide migration²⁶ (detailed discussions in the Supplementary Information). The bandgap change is consistent with the first-principles calculations and absorption measurements (Extended Data Fig. 3). The photoluminescence peak in Fig. 2a also broadens with increasing strain (Supplementary Fig. 5), which is not due to possible charge transfer between the epitaxial α -FAPbI₃ and the substrate (Supplementary Fig. 6). Temperature-dependent photoluminescence studies suggest that the emission peak broadening originates from the reduced crystalline quality and the enhanced carrier-phonon coupling under the strain (Extended Data Fig. 4).

Additionally, we studied confocal photoluminescence spectra at different locations in an α -FAPbI₃ film of around 3 μ m on a substrate of MAPbCl_{1.50}Br_{1.50} (Fig. 2b). The photoluminescence peak shifts from about 1.479 eV when the laser is focused at the interface where the local strain is high, to about 1.523 eV at 3 µm from the interface where the strain is relaxed. As a control, the photoluminescence redshift in a strain-free sample is less obvious (from about 1.516 eV to about 1.523 eV, Supplementary Fig. 7a), which is attributed to reabsorption²⁵. In the strained sample, we exclude elastic relaxation although halide perovskites are much softer than conventional semiconductors²⁷. Our finite element analysis simulation results show that the elastic relaxation for a 3- μ m-thick α -FAPbI₃ thin film is negligible: only around 0.09% (Supplementary Fig. 8). Thickness-dependent in-plane XRD is used to study the critical thickness at which the strain will start to be plastically relaxed (Extended Data Fig. 5). The results show that the critical thickness is much less than the thickness we used in this study and, therefore, the relaxation can be attributed to plastic relaxation by the formation of dislocations. Photoluminescence measurements from samples of different thicknesses show a similar trend (Supplementary Fig. 9), indicating that the strain is relaxed by dislocations when the film grows thicker. Temperature-dependent photoluminescence studies indicate that the bandgap of α -FAPbl₃

Fig. 3 | **Electronic properties. a**, Calculated effective masses of the carriers at different strains, and electronic bandstructures under three strain levels (3%, 0% and -3%). The electron effective mass (m_{e}^{*}) remains relatively stable with the change in strain, while the hole effective mass (m_{e}^{*}) decreases with increasing compressive strain. The dashed lines represent the dispersivity of the valence band; a less dispersive valence bandstructure indicates a smaller hole effective mass. The Z, R and A points are high-symmetry points in the first Brillouin zone of the tetragonal lattice. Bottom panels with coloured borders represent three typical examples with different strains. b, Hole mobilities by Hall effect measurements showing that α -FAPbI₃ with strain of -1.2% has the highest hole mobility. Coloured symbols correspond to the strain as in c. The decrease of the hole mobility. Number of experiments, n = 5 for each strain. Inset, the

under both 0% and –2.4% strain shows a strong temperature dependence, owing to the soft nature of α -FAPbI₃ (Fig. 2c and Extended Data Fig. 4)⁷. The strained-sample bandgap is less temperature-dependent compared to that of the strain-free sample, because the smaller thermal expansion coefficient of the substrate compared to the epitaxial layer introduces a constraint²⁸ (detailed discussions in the Supplementary Information).

Ultraviolet photoelectron spectroscopy (UPS) reveals the bandstructure evolution of the α -FAPbI₃ under strain (see Fig. 2d for 0%) and -2.4% strain and Extended Data Fig. 6 for other strains). All samples exhibit p-type behaviour (see Supplementary Information for more details). The Fermi level and the valence-band maximum (VBM) of the samples can be extracted from the UPS data. The results show that strain of -2.4% lifts the VBM upward by about 50 meV compared to the strain-free scenario. Considering the change in the bandgap (about 35 meV, Fig. 2a), the -2.4% strain pushes the conduction-band minimum (CBM) upward by about 15 meV compared to the strain-free scenario. The VBM mainly consists of lead 6s and iodine 5p orbitals, and the enhanced coupling between these orbitals under compressive strain pushes the VBM upward²⁹. The CBM, which consists mostly of nonbonding localized states of Pb p orbitals, is less sensitive to the deformation of the PbI₆ octahedrons⁷. Therefore, the in-plane compressive strain increases the VBM more than it does the CBM.

structure of the measurement setup (gold, yellow; parylene-C, grey), not to scale. **c**, Transient photocurrent curves of the epitaxial α -FAPbl₃ under different strains. The transient photocurrent curves are plotted on a log–log scale. The carrier transit time—that is, the inflection point of the photocurrent curve—is marked by a solid red circle. The inflection point indicates the point at which the charge transport carriers switch from the majority to the minority carriers. Lines are guides to the eye. **d**, Plots of calculated carrier mobilities as a function of the strain magnitudes. The inset equation, $\mu = d^2/Vt$, transforms the carrier transit time to the carrier mobility, where μ is the calculated time-offlight carrier mobility, *d* is the target region thickness, *V* is the applied voltage and *t* is the measured carrier transit time. Number of experiments, n = 5 for each strain. Inset, schematic measurement setup. Coloured symbols correspond to the strain as in **c**.

The lattice deformation can alter the electronic bandstructure and therefore also the carrier dynamics. The effective mass of charge carriers can be assessed by the band curvature extracted from first-principles calculations³⁰. Figure 3a shows the calculated results of the electron effective mass, $m_{e,}^*$ and hole effective mass, m_h^* (the top panel) and three typical electronic bandstructures (the bottom panels) under different strains. On the one hand, the *E*-*k* dispersion of the conduction band remains relatively unaltered, and m_e^* shows only a slight variation under strain between 3% and -3%. On the other hand, compressive strain can modulate the *E*-*k* dispersion of the valence band and considerably reduce m_h^* .

To validate these calculations, Hall effect carrier mobilities of the α -FAPbI₃ thin films under strain of between 0% and -2.4% are measured (Fig. 3b). Finite element analysis simulation results show that potential carrier transfer from the substrate to the epitaxial layer is negligible, owing to an insulating layer (Parylene-C) and the energy barrier between the epitaxial layer and the substrate (Supplementary Fig. 10). All samples measured by the Hall effect show a p-type character, which is consistent with the UPS results. Of all strain levels tested, films under -1.2% strain on a MAPbCl_{0.60}Br_{2.40} substrate have the highest hole mobility (Fig. 3b). Further increasing the strain results in a drastic drop in the hole mobility, because of the higher dislocation densities that arise at higher strain levels. We note that the devices for

Fig. 4 | **Epitaxial stabilization. a**, Phase stability comparison of thin (sub-100 nm, -2.4% strained; pink) and thick (about 10 μm, strain-free; black) epitaxial α-FAPbI₃ on MAPbCl_{1.50}Br_{1.50} substrates by XRD. α, α-FAPbI₃; δ, δ-FAPbI₃; S, substrate. The thin, strained sample shows better phase stability (red curves). For the thick, strain-free sample, the (001) peak for α-FAPbI₃ at 13.92° is the same as the strain-free sample in Supplementary Fig. 1a, which indicates that the top surface of the thick sample is fully relaxed (day 0, black curve). The X-ray can penetrate about 10–20 µm into the halide perovskites, which explains why the substrate peaks are more intense in the thin sample than in the thick sample. The thick, strain-free sample shows signs of a phase transition to δ-FAPbI₃ after 24 h (lower black curve). **b**, Phase stability study by photoluminescence spectroscopy. Re-measurement of the thin, strained sample after 360 d (lower pink curve) shows no obvious photoluminescence peak shift, but does show a slight decrease in peak intensity owing to its natural

Hall effect measurements have an epitaxial-layer thickness larger than the critical thickness to ensure sufficient contact area between the halide perovskite and the bottom electrode. Therefore, a high strain level will induce a high concentration of dislocations that degrade the hole mobility.

To validate the Hall mobility, we carried out time-of-flight measurements. The transient photocurrents after single excitation are plotted logarithmically in Fig. 3c. The carrier transit time shows the smallest value of the film under -1.2% strain. The calculated carrier mobility is plotted as a function of the strain applied (Fig. 3d, see the Supplementary Information for calculation details), and shows a similar trend to that given by the Hall effect. We note that the absolute mobility values from the time-of-flight and Hall effect measurements differ, owing to experimental uncertainties in the type and quality of electronic contacts made during the fabrication processes³¹. The space-charge-limited-current method can quantify trap density³². Results show that a higher strain level leads to a higher trap density (Extended Data Fig. 7 and Supplementary Fig. 11), which explains the observed decrease in mobility under a higher strain magnitude. Capacitance-frequency $(C-\omega)$ spectroscopy is also used to cross-check the trap density (Supplementary Fig. 12), the results of which correspond well with those obtained by the space-chargelimited-current method.

It is widely accepted that α -FAPbI₃ crystals are metastable at room temperature and can quickly phase transform to photo-inactive δ -FAPbI₃ within approximately 24 h (ref. ¹⁶), owing to its internal lattice strain and low entropy^{19,33}. Existing strategies for α -FAPbI₃ stabilization, including alloying²⁶ and surface passivation³⁴, either widen the bandgap or raise the carrier transport barrier by introducing nonconductive ligands (detailed discussions in the Supplementary Information). However, the epitaxial α -FAPbI₃ thin film exhibits long-lasting phase stability at room temperature.

Figure 4a shows XRD results of a sub-100-nm epitaxial α -FAPbI₃ thin film that is stable for at least 360 d after growth (red curves in Fig. 4a). In the 10- μ m epitaxial thick film (far beyond the threshold thickness at which the strain is fully relaxed), the stabilization effect disappears: after 24 h, XRD peaks from δ -FAPbI₃ can be detected (black curves in degradation into PbI₂ (ref. ¹⁶). For the thick, strain-free sample, the photoluminescence spectrum shows an emission peak close to 1.52 eV, similar to that in the strain-free α -FAPbI₃ bulk crystal shown in Fig. 2a, indicating a full strain relaxation in the thick sample. Re-measurement after 24 h (lower black curve) shows that the thick film undergoes a transition from the α phase to the δ phase. Insets, optical images of the two samples, showing clear visual clues of the phase stability in the thin, strained sample (black α phase) and the phase transition in the thick, strain-free sample (yellow δ phase) after 24 h. Scale bars, 2 mm. **c**, Phase stability study by Raman spectroscopy. The Raman characteristics of the thin, strained sample show a peak at 143 cm⁻¹ with no substantial difference after 360 d; the thick, strain-free sample (peak at 136 cm⁻¹) shows signs of a phase transformation to δ -FAPbI₃ after 24 h, as revealed by its signature peak at 108 cm⁻¹.

Fig. 4a). The phase stability of the strained α -FAPbI₃ is also verified by photoluminescence (Fig. 4b) and Raman spectroscopy (Fig. 4c). A possible stabilization effect from incorporating bromine or chlorine into the α -FAPbI₃ can be excluded, because those foreign ions would stabilize the α -phase regardless of the epilayer thickness. X-ray photoelectron spectroscopy (XPS) measurements showing the absence of bromine and chlorine provide additional evidence that this is not the origin of the stability (Extended Data Fig. 8).

The mechanism of the stable thin α -FAPbI₃ can be explained by two reasons. First, the interfacial energy of cubic α -FAPbI₃/cubic substrate is much lower than that of hexagonal δ-FAPbI₃/cubic substrate, which is the most critical factor for the stabilization effect (Supplementary Fig. 13, Supplementary Table 3, and see Supplementary Information for details). The epitaxial lattice is constrained to the substrate owing to the strong ionic bonds between them and, therefore, the lattice is restricted from the phase transition. Second, the driving force of the α -to- δ phase transition is believed to be the internal tensile strain in the α -FAPbI₃ unit cell, which can induce the formation of vacancies and subsequent phase transition³⁵. In this study, the epitaxial film is under compressive strain, which neutralizes the effect of the internal tensile strain. Therefore, the synergistic effect of the low-energy coherent epitaxial interface and the neutralizing compressive strain are the key to α-FAPbI₃ stabilization. As a control, epitaxial α -FAPbI₃ thin film is removed from the substrate (Supplementary Fig. 14); the removed α -FAPbI₃ transforms to the δ phase within 24 h.

We demonstrate high-responsivity photodetectors as a use case of the strain engineered α -FAPbI₃ thin film. Figure 5a shows the current–voltage (*I–V*) characteristics of a strain-free device and a device under –1.2% strain. The dark current at –1 V in the strained device is around 15% higher than that in the strain-free one, indicating the higher defect density of the strained device. However, the photocurrent in the strained device increases by approximately 180% compared to the strain-free device. We attribute the photocurrent increase to higher carrier mobility and better alignment of VBM to the Fermi level of the gold electrode under compressive strain (Supplementary Fig. 15).

Fig. 5 | Photodetector characterizations of the α -FAPbl₃ thin films. **a**, *I*-*V* characteristics of Au/ α -FAPbl₃/indium tin oxide photoconductor structured photodetectors. The dark current and photocurrent of the -1.2% strained detector are about 15% and 180% higher than those of its strainfree counterpart. Detectors are tested with a 685-nm laser under 0.015 W cm⁻². **b**, Comparison of responsivity of the -1.2% strained and strain-free photodetectors. The responsivity of both devices shows an increasing trend with decreasing incident power, as the chances of carrier recombination go down at low illumination intensities³⁶. The strained device yields a higher

Responsivity of the two photodetectors-defined as the change in photocurrent per unit of illumination intensity-is measured at various illumination intensities (Fig. 5b). The responsivity of the strained device, which reaches a maximum of 1.3×10^6 A W⁻¹ at an incident power density of 1.1×10^{-7} W cm⁻², is almost twice of that of the strainfree device. This is again attributed to the enhanced carrier mobility and the better band alignment of the strained device. The responsivity of this strained device is, to our knowledge, the highest reported for a α -FAPbl₃ device under similar measurement conditions (for example, applied voltage and incident power (Supplementary Table 4)). Similar to the trend in Hall effect carrier mobility, the measured responsivity peaks at -1.2% strain (Extended Data Fig. 9a). Compressive strain also improves the detectivity and the gain of the photodetector (Extended Data Fig. 9b, c). Devices with a diode structure can reduce the dark current, but have a much lower responsivity: on average 500 times lower than that of the photoconductor-type device (Supplementary Fig. 16).

The strained device also shows an enhanced external quantum efficiency over the visible range (Fig. 5c), owing to the enhanced carrier mobility as well as more efficient carrier transport across the gold– perovskite interface. Additionally, after normalizing the spectra, a distinct response in the short-wave infrared region (>810 nm) can be identified for the strained device (Extended Data Fig. 9d), consistent with the photoluminescence measurements showing bandgap reduction under compressive strain. The rise and fall times of the strained device are around 30% shorter than those of the strain-free device, indicating a faster carrier dynamics (Fig. 5d).

responsivity owing to higher carrier mobility and better band alignment. Inset, the statistical average of the detector performance. Number of experiments, n = 5 for each strain value. **c**, External quantum efficiency spectra of the -1.2% strained and strain-free photodetectors showing that the strained photodetector yields a higher external quantum efficiency as well as a broader absorption spectrum (Extended Data Fig. 9d), owing to enhanced carrier mobility and bandgap reduction. **d**, Response times of the photodetectors, with faster rise and fall times for the -1.2% strained (9 µs and 34 µs) than the strainfree (14 µs and 50 µs) device due to the enhanced carrier mobility and transport.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1868-x.

- 1. Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42-49 (1954).
- Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. *Nat. Mater.* 11, 329–336 (2012).
- Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).
- Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
- Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. *Nat. Electron.* 1, 404–410 (2018).
- Lü, X. et al. Enhanced structural stability and photo responsiveness of CH₃NH₃SnI₃ perovskite via pressure-induced amorphization and recrystallization. *Adv. Mater.* 28, 8663–8668 (2016).
- Liu, G. et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater. 27, 1604208 (2017).
- Wang, Y. et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).
- Chen, B. et al. Large electrostrictive response in lead halide perovskites. Nat. Mater. 17, 1164 (2018).
- Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

- Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).
- Steele, J. A. et al. Thermal unequilibrium of strained black CsPbl₃ thin films. Science 365, 679–684 (2019).
- Wang, Y. et al. Nontrivial strength of van der Waals epitaxial interaction in soft perovskites. Phys. Rev. Mater. 2, 076002 (2018).
- Li, X., et al. Residual nanoscale strain in cesium lead bromide perovskite reduces stability and shifts local luminescence. *Chem. Mater.* 31, 2778–2785 (2019).
- Wang, Y. et al. Defect-engineered epitaxial VO_{2zδ} in strain engineering of heterogeneous soft crystals. Sci. Adv. 4, eaar3679 (2018).
- Han, Q. et al. Single crystal formamidinium lead iodide (FAPbl₃): insight into the structural, optical, and electrical properties. *Adv. Mater.* 28, 2253–2258 (2016).
- Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite singlecrystal photodetectors enabled by surface-charge recombination. *Nat. Photon.* 9, 679–686 (2015).
- Pohl, U. W. Epitaxy of Semiconductors: Introduction to Physical Principles (Springer, 2013).
 Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium
- lead iodide perovskite. Sci. Adv. **2**, e1601650 (2016). 20. Maculan, G. et al. CH₃NH₃PbCl₃ single crystals: inverse temperature crystallization and
- visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015).
 Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of
- ARbX₃ (A= Cs or CH₃NH₃; X=1 or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).
- Steele, J. A. et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017).
- Li, D. et al. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 7, 11330 (2016).
- Sarmah, S. P. et al. Double charged surface layers in lead halide perovskite crystals. Nano Lett. 17, 2021–2027 (2017).
- Kanemitsu, Y. Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices. J. Mater. Chem. C 5, 3427–3437 (2017).

- Xie, L.-Q. et al. Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. J. Am. Chem. Soc. 139, 3320–3323 (2017).
- Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377–379 (2018).
- Ge, C. et al. Ultralow thermal conductivity and ultrahigh thermal expansion of singlecrystal organic-inorganic hybrid perovskite CH₃NH₃PbX₃ (X = Cl, Br, I). J. Phys. Chem. C 122, 15973–15978 (2018).
- Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y. & Wei, S.-H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).
- Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).
- Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).
- Dong, Q. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH₃NH₃PbI₃ single crystals. Science **347**, 967–970 (2015).
- Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).
- Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017).
- Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. *Nat. Energy* 3, 648–654 (2018).
- Liu, Y. et al. A 1300 mm₂ ultrahigh-performance digital imaging assembly using highquality perovskite single crystals. Adv. Mater. 30, 1707314 (2018).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Methods

Precursor synthesis

Methylammonium bromine (MABr) was synthesized as the precursor for the substrate growth. First, 20 ml methylamine (40% in methanol, Tokyo Chemical Industry) and 21.2 ml hydrobromic acid (48 wt% in water, Sigma Aldrich) were mixed in an ice bath and the temperature was maintained for the reaction to continue for 2 h. The mixture was heated to 80 °C to evaporate the solvent. The precipitate was dissolved in anhydrous ethanol (Sigma Aldrich) at 80 °C and cooled down for recrystallization. The crystals were then centrifuged with diethyl ether and dried at 80 °C overnight.

Crystal growth

Methylammonium lead chloride (MAPbCl₃) solution was prepared by mixing 0.6752 g of methylammonium chloride (MACl, 98%, Tokyo Chemical Industry) and 2.781 g lead chloride (PbCl₂, 99%, Alfa Aesar) in a mixed solution of 5 ml anhydrous dimethylformamide (99.8%, Aldrich) and 5 ml anhydrous dimethyl sulfoxide (DMSO, 99.8%, Aldrich). Methylammonium lead bromine (MAPbBr₃) solution was prepared by mixing 1.120 g MABr and 3.670 g lead bromine (PbBr₂, 98%, Acros) in 10 ml dimethylformamide. The MAPbCl₃ and MAPbBr₃ solutions were mixed with different ratios. The mixed solutions were kept at room temperature to slowly evaporate the solvent, and single crystals were collected to use as substrates. FAPbl₃ solutions were prepared by mixing formamidinium iodide (FAI, 99.9%, Greatcell Solar) and lead iodide (Pbl₂, 99.9%, Tokyo Chemical Industry) at a molar ratio of 1:1 in anhydrous gamma-butyrolactone (Sigma Aldrich) with different concentrations. Strain-free α -FAPbl₃ single crystals were obtained by heating the FAPbl₃ solutions to 120 °C.

Epitaxial growth

The substrates were heated to different temperatures, and the preheated FAPbI₃ solutions (at 100 °C) were then deposited onto the substrates for epitaxial growth.

Structural and optical characterizations

SEM images were taken with a Zeiss Sigma 500 SEM operated at 3 kV. The $2\theta/\omega$ XRD patterns, the rocking curve (ω scan), and the asymmetrical reciprocal space mapping around the (104) reflection of the substrate were measured by a Rigaku Smartlab diffractometer equipped with a copper K α_1 radiation source ($\lambda = 0.15406$ nm) and a germanium (220 × 2) monochromator. The unit cell parameters (a, c) for (104) reflection reciprocal space mapping were converted from (Q_x, Q_z) by $a = 1/Q_x, c = 4/Q_z$. Raman and photoluminescence spectra were measured by a Raman spectrometer (Renishaw inVia). Raman peak fitting was done by the Renishaw inVia software. Atomic force microscopy was carried out by a scanning probe microscope (Veeco) in a tapping mode. XPS and UPS were carried out by a Kratos AXIS Supra with an aluminium Kα anode source and a He I (21.22 eV) source, respectively. Measurements were operated under a chamber pressure of 10^{-8} torr. XPS data were calibrated with the c 1s peak (284.8 eV). If not otherwise specified, bulk α -FAPbI₃ single crystals were used as the strain-free samples for structural and optical characterizations.

Device fabrication

Devices with a vertical structure were fabricated based on a lithography-based method³⁷. Parylene-C (50 nm) and gold (50 nm) were sequentially deposited on the substrates, followed by a photolithography process with photoresist AZ-1512. The pattern was composed of an array of 2-µm-diameter circles (exposed) with 1 µm interdistance (covered by photoresist). The gold was chemically etched with wet etchants and the Parylene-C was precisely etched by reactive ion etching. The etched substrates underwent secondary growth in their corresponding growth solutions so that the substrate surface reached the same height as the electrode. Epitaxial growth on the patterned substrate enabled the α -FAPbl₃ crystals to initiate from the exposed patterns and gradually merge into a thin film with a controllable thickness. We note that the MAPbCl_xBr_{3-x} substrates were used for the strained devices (heteroepitaxy) and α -FAPbI₃ substrates were used for the strain-free devices (homoepitaxy). The top electrodes were then deposited by sputtering (for indium tin oxide, 200 nm). For vertical devices, the area of the top electrode was controlled to be $1 \times 1 \text{ mm}^2$ using a shadow mask. For planar devices, Parylene-C (50 nm) and the electrode (gold, 50 nm) were deposited using a shadow mask with designed electrode layouts.

Electrical characterizations

Space-charge-limited-current measurements were carried out by a source meter (Keithley 2400) and a customized probe station in a dark environment. Devices with an Au/Perovskite/Au structure were used. $C-\omega$ measurements were carried out by a parameter analyser (B1500. Agilent) in a dark environment. Devices with an Au/perovskite/indium tin oxide structure were used. The thickness of α -FAPbI₃ of all devices for space-charge-limited current and $C-\omega$ measurements was controlled to be 500 nm. Hall effect measurements were carried out with a Lake Shore Hall measurement system (HM 3000) using the van der Pauw method. We note that the Parylene-C layer prevented direct contact between the substrate and electrodes, eliminating possible carriers extracted from the substrate. The thickness of the α -FAPbI₃ for all devices for Hall effect measurement was controlled to be 500 nm. For the time-of-flight measurement, a 685-nm-pulse laser (10 mW cm⁻²) with $< 10^{-10}$ -s pulse width was used as the light source. Photoresponse was measured with an oscilloscope (MSO6104A Channel Mixed Signal, Agilent). An external bias of 1V was applied to drive the carriers in the device while a 1-M Ω resistor was connected in series to simulate the open-circuit condition so that the carriers were effectively blocked in the devices³². The measurement was carried out in the dark while the bias and the laser power were kept constant. The experiment setup followed the reported time-of-flight measurement of halide perovskite single crystals^{32,38-40}. The α -FAPbI₃ thickness of all devices for time-offlight measurements was also controlled to be 500 nm.

Photodetector characterizations

Devices with the structure shown in Supplementary Figs. 15 and 16 were used. A 685-nm laser was used as the light source. The *I*-*V* characteristics were collected on a probe station with an Agilent B2912A source meter.

First-principles calculations

First-principles density functional theory calculations were performed using the Vienna ab initio Simulation Package (VASP)⁴¹. Electron-ion interactions were described using the Projector Augmented Wave pseudopotential⁴². The electron-electron exchange-correlation functional was treated using the Generalized Gradient Approximation parametrized by Perdew, Burke and Ernzerhof⁴³. For bandgap calculations, spin-orbit coupling was incorporated owing to the heavy element Pb, and the hybrid functionals within Heyd-Scuseria-Ernzerhof formalism with 25% Hartree-Fock exchange were employed. A cutoff energy of 400 eV for the plane-wave basis set was used. All structures were fully optimized until all components of the residual forces were smaller than 0.01 eV Å⁻¹. The convergence threshold for self-consistent-field iteration was set at 10⁻⁵ eV. For optimization of the cubic lattice parameter, a Γ -centred $3 \times 3 \times 3$ k-point mesh was used. A denser k-point mesh of 4 × 4 × 4 was used to obtain accurate energies and electronic structures for strained cells. For optimization and static calculations of the heterostructural models, Γ -centred 4 × 4 × 1 and 5 × 5 × 1 k-point meshes were used, respectively. Raman intensities were calculated by the CASTEP module in Materials Studios⁴⁴ with a $3 \times 3 \times 3 k$ -point mesh and a 400 eV cutoff energy.

Finite element analysis simulations

Simulation of the current density was done by the multiphysics analysis in COMSOL (version 5.4; www.comsol.com). Simulation of the elastic strain relaxation was done by the ABAQUS⁴⁵.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

- Lei, Y. et al. Controlled homoepitaxial growth of hybrid perovskites. Adv. Mater. 30, 1705992 (2018).
- Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. *Science* **347**, 519–522 (2015).
- Pospisil, J. et al. Density of bulk trap states of hybrid lead halide perovskite single crystals: temperature modulated space-charge-limited-currents. Sci. Rep. 9, 3332 (2019).
- Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).
- Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169–11186 (1996).
 Diff. H. D. F. Dester a supersched universited of the part of the plane for the plane for the plane.
- Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* 50, 17953–17979 (1994).
 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
- Percev, S. F., Duke, K. & Erizerio, M. Generatzea gradient approximation made simplex networks, S. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570
- Clark, S. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).
- Smith, M. ABAQUS/Standard User's Manual Version 6.9 (Dassault Systèmes Simulia Corp, 2009).

Acknowledgements We thank T. N. Ng and Z. Wu for guidance on the transient photocurrent measurement; P. Liu and S. Yu for sharing the Rikagu Smartlab diffractometer; D. P. Fenning and X. Li for discussions; Q. Lin for guidance on the reciprocal space mapping measurements; S. Wang for analysis and discussions of the UPS; Y. Zeng for training on the Renishaw inVia

Raman spectrometer; Y. Li, Y. Yin and M. Chen for guidance on the finite element analysis simulations; and S. Xiang for constructive feedback on manuscript preparation. This work was supported by the startup fund by the University of California San Diego. The microfabrication involved in this work was performed at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which was supported by the the National Science Foundation (grant number ECCS-1542148). K.Y. acknowledges the National Science Foundation under award number ACI-1550404 and computational resources from Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Author contributions S.X. and Y.C. conceived the idea. Y.C. and Y. Lei prepared the samples. Y.C. and Y. Lei took the optical and SEM images. Y.C., J.S. and M.-H.C. carried out the XRD, Raman and photoluminescence spectroscopy characterizations. R.R. and A.E.I. contributed to the temperature-dependent photoluminescence characterizations. Y. Li and J.S. carried out the density functional theory calculations. Y.C. and W.C. carried out the finite element analysis simulations. Y.C., Y. Lei, Y.G., C.W. and J.C. contributed to the device fabrication. Y.C., YY. and W.C. carried out the mobility measurements. Y.C. carried out the trap density measurements. Y.C. carried out the trap density measurements. Y.C. analysing the data and commenting on the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1868-x.

Correspondence and requests for materials should be addressed to S.X. Peer review information *Nature* thanks Jian Shi, Lijun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions information is available at http://www.nature.com/reprints.

Extended Data Fig. 1 | **Characterization of substrate quality with different growth methods and its impact on the epitaxial strain. a**–f, Rocking curve measurements of substrates grown by the inverse temperature crystallization (ITC) and slow solvent evaporation (SSE) methods. Lower full-width at halfmaximum (FWHM) values by the SSE indicate better crystal quality. g, XRD patterns of strained α-FAPbl₃ on a substrate with higher crystal quality (red curve) and relaxed α -FAPbI₃ on a substrate with lower crystal quality (grey curve). Dislocations in the substrates can propagate into and relax the strain in the epitaxial α -FAPbI₃. The vertical dash line labels the (001) peak position of strain-free α -FAPbI₃. The peak position from the strain-relaxed FAPbI₃ (grey curve) shifts back to that of strain-free α -FAPbI₃.

Extended Data Fig. 2 | Atomic force microscopy morphology characterization of strained and strain-relaxed epitaxial α-FAPbl₃ films. a, b, A topography image (a) and the corresponding height scanning curve (b) of the red line in a of a strained epitaxial α-FAPbl₃ thin film. c, d, A topography image (c) and the corresponding height scanning curve (d) of the black line in c of a strain-relaxed epitaxial α-FAPbl₃ thick film. Results show that the strained

thin film adopts a layer-by-layer growth model. No cracks or holes can be detected. As the film thickness increases, the total strain energy builds up and generates dislocations that propagate throughout the film and relax the strain, leading to the formation of cracks and holes. These cracks and holes are typically regarded as a signature of strain relaxation.

Extended Data Fig. 3 | First-principles calculations of the strained α -FAPbl₃ unit cell and experimental absorption spectra of the strained α -FAPbl₃ under different strains. a, Evolution of lattice volume and bandgap as a function of strain for three α -FAPbl₃ lattices with different FA⁺ organic cation orientations. For the bandgap calculations, spin-orbit coupling is incorporated owing to the heavy element Pb, and the hybrid functionals within Heyd-Scuseria-Ernzerhof formalism with 25% Hartree-Fock exchange are

employed. **b**, The absorption spectra of the strained α -FAPbl₃ thin films. The absorption onset redshifts will the increasing strain, which agrees with the photoluminescence spectra and prove that the strain can alter the bandgap of the α -FAPbl₃. **c**, The *c* axis length of the unit cell when biaxially straining the *a/b* axes. The slope of the fitted line shows a Poisson's ratio of about 0.3. **d**, C–N and C=N bond lengths at different strain levels. Simulation results show that the deformation of the FA⁺ skeleton is very small under the applied biaxial strain.

Extended Data Fig. 4 | **Temperature-dependent photoluminescence measurement. a**, **b**, Temperature-dependent photoluminescence of strained (**a**) and strain-free (**b**) α-FAPbl₃ before normalization. **c**, **d**, Temperaturedependent photoluminescence of strained (**c**) and strain-free (**d**) α-FAPbl₃ after normalization. Both samples exhibited uniform bandgap narrowing and FWHM narrowing with decreasing the temperature. **e**, **f**, Temperaturedependent photoluminescence (PL) FWHM of strained (**e**) α-FAPbl₃ and strain-

free (**f**) α -FAPbl₃ with fitting. Results show that the strained α -FAPbl₃ has a higher Γ_0 , γ_{L0} and E_{L0} than that of strain-free α -FAPbl₃ owing to the strain-induced crystalline quality reduction and the strain-enhanced carrier-phonon scattering. Γ_0 , temperature-independent emission linewidth term associated with the structural disorder scattering, γ_{L0} , charged-carrier-optical-phonon coupling constant. E_{L0} , optical phonon energy.

Extended Data Fig. 5 | **Plastic strain relaxation study of the epitaxial** α -FAPbI₃ thin films. a, b, Thickness-dependent in-plane XRD of -1.2% strained (a) and -2.4% strained (b) α -FAPbI₃ thin films. Vertical lines label the peak position of the fully strained films. Plastic strain relaxation at relatively high thickness can be evident by the peak shifting to lower angle and peak broadening. c, Thickness-dependent relaxation constant *R* of the epitaxial α -FAPbI₃ thin films with different strains. Results show that the critical

thickness decreases with increasing strain. **d**, Fitting of the experimental critical thicknesses with the People and Bean and the Matthew and Blakeslee models (see Supplementary Information refs 69 and 70). Experimental results agree well with the People and Bean model, indicating that the plastic strain relaxation due to the dislocations generated during the epitaxial growth is the dominating relaxation mechanism.

Extended Data Fig. 6 | **UPS spectra of** α -**FAPbI**₃ **under different strains. a**, The intersects of the curves with the baseline in the high-binding-energy region give the Fermi level position of corresponding strained α -FAPbI₃ films. There is a clear shift of the intersects to higher-binding-energy levels when the compressive strain becomes larger. b, The intersects of the curves with the

baseline in the low-binding-energy region give the energy difference between the Fermi level and the VBM. All α -FAPbl₃ films have p-type character according to the calculated Fermi level position in the bandgap. Meanwhile, the VBM is pushed up more than the CBM with increasing strain. Inset, a schematic band diagram of the α -FAPbl₃ under different strains.

Extended Data Fig. 7 | Space-charge-limited-current measurement of the epitaxial α-FAPbI₃ with different strains. a-d, *I-V* characteristic curves for the space-charge-limited-current measurement of the epitaxial α-FAPbI₃ film with different strains. While the forward scans indicate a typical trap-filling

process with increasing the applied voltage, the reverse scan doesn't show a detrapping process. Number of experiments, n = 5 for each strain value. n_{trap} , calculated trap density.

Extended Data Fig. 8 | **XPS spectra of strained α-FAPbl**₃. XPS spectra of: **a**, 13*d*; **b**, Pb 4*f*; **c**, Br 4*p*; and **d**, Cl 2*p* photoelectrons from a strained α-FAPbl₃ film. Results show that Br and Cl are absent in the strained α-FAPbl₃.

Extended Data Fig. 9 | Photoconductor-type photodetector characterizations with a 685-nm laser. a, Responsivity as a function of strain level in α -FAPbI₃. Devices under -0.8%, -1.2% and -1.4% compressive strain give better responsivity compared to the strain-free devices. Further increasing the compressive strain can lead to a higher density of dislocations, which reduces the responsivity. Number of experiments, n = 5 for each strain value.

b, **c**, Detectivity (**b**) and gain *G* (**c**) of the photodetector based on α -FAPbl₃ under -1.2% strain, indicating enhanced performance. *q*, element charge. *J*_d, dark current density. **d**, Normalized external quantum efficiency (EQE) of the photodetector based on α -FAPbl₃ under -1.2% strain, showing an extended infrared absorption range.

Supplementary information

Strain engineering and epitaxial stabilization of halide perovskites

In the format provided by the authors and unedited

Yimu Chen, Yusheng Lei, Yuheng Li, Yugang Yu, Jinze Cai, Ming-Hui Chiu, Rahul Rao, Yue Gu, Chunfeng Wang, Woojin Choi, Hongjie Hu, Chonghe Wang, Yang Li, Jiawei Song, Jingxin Zhang, Baiyan Qi, Muyang Lin, Zhuorui Zhang, Ahmad E. Islam, Benji Maruyama, Shadi Dayeh, Lain-Jong Li, Kesong Yang, Yu-Hwa Lo & Sheng Xu 1

Supplementary Information for:

2 Strain engineering and epitaxial stabilization of halide perovskites

Yimu Chen^{1,8}, Yusheng Lei^{1,8}, Yuheng Li¹, Yugang Yu², Jinze Cai², Ming-Hui Chiu³, Rahul Rao⁴, Yue Gu²,
Chunfeng Wang¹, Woojin Choi⁵, Hongjie Hu², Chonghe Wang¹, Yang Li¹, Jiawei Song², Jingxin Zhang²,
Baiyan Qi², Muyang Lin¹, Zhuorui Zhang¹, Ahmad E. Islam⁴, Benji Maruyama⁴, Shadi Dayeh^{1,2,5}, Lain-Jong Li^{3,6}, Kesong Yang¹, Yu-Hwa Lo^{2,5}, Sheng Xu^{1,2,5,7*}

- ⁸ ¹Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- ⁹ ²Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
- ³Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal,
- 11 23955, Kingdom of Saudi Arabia.
- 12 ⁴Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force
- 13 Base, Dayton, Ohio 45433, USA.
- ⁵Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093,
- 15 USA.
- ⁶School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia.
- ⁷Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- 18 ⁸These authors contributed equally: Yimu Chen, Yusheng Lei.
- 19 *e-mail: <u>shengxu@ucsd.edu</u>

⁷

20

Supplementary Discussion 1: Current Methods to Strain Halide Perovskites

Strain engineering of halide perovskites is now receiving increasing attention in the field to improve the device performance by understanding device physics and improving materials quality. Different from the conventional semiconductors and perovskite oxides, the controllable strain engineering by heteroepitaxial growth of halide perovskites has not been achieved yet, to the authors' best knowledge, which is due to inappropriate growth methods and the absence of suitable lattice-mismatched substrates, therefore the lack of strong chemical bonds formed with the substrates.

Epitaxial growth of halide perovskites has been reported by many groups, but most of 28 29 the works have been van der Waals epitaxy that is absent from strong interfacial chemical 30 bonds¹⁻³. Despite the weak nature of van der Waals bonds, nontrivial effects from van der 31 Waals interaction to the epitaxial halide perovskites have been demonstrated due to the soft nature of halide perovskites⁴. Besides van der Waals epitaxy, chemical epitaxy by forming 32 interfacial ionic bonds has also been reported^{5,6}. However, due to the extremely high growth 33 temperature (~500 °C), the interface was destroyed by the high diffusion rate of ions at such a 34 35 high temperature and therefore, no interfacial strain could be detected. Other than epitaxial strain, thermally strained halide perovskites have also been studied. The thermal expansion 36 37 coefficient difference between a patterned substrate and the halide perovskite was utilized to 38 induce thermal strain to a perovskite microcrystal⁷. A thermally strained halide perovskite by introducing a phase transition of the substrate via increasing the temperature has also been 39 demonstrated⁸. In this case, the thermal strain is highly dependent on the temperature and the 40 41 magnitude of the strain cannot be well controlled.

42 Besides manipulating single crystalline halide perovskites, researchers are also creating 43 strain in polycrystalline thin films by a variety of methods. One of the most popular methods is the ion substitution of a larger/smaller ion that can induce local tensile/compressive strain 44 in the perovskite lattice^{9,10}. Local compressive strain by small ion substitution was found to 45 improve the stability of halide perovskites¹⁰. It was demonstrated that the local compressive 46 strain by ion substitution could suppress the vacancy formation in halide perovskites⁹. 47 48 Additionally, the crystalline quality of halide perovskites could be controlled by local strain via ion substitution¹¹. Besides ion substitution, it was also reported the control of the local 49 strain by light-induced lattice expansion¹². The local strain was found to affect the 50 optoelectronic properties of halide perovskites by creating defect distribution heterogeneity¹³. 51 52 Recently, residual strain in polycrystalline halide perovskite films induced by the thermal annealing process has been reported. The residual strain in the polycrystalline 53 methylammonium lead iodide film was found to have an impact on the perovskite stability¹⁴. 54 Also, residual strain in the polycrystalline mixed halide perovskite film was reported to affect 55 the carrier dynamics¹⁵ and phase transition¹⁶. Hydrostatic pressurization was another 56 commonly used method to apply strain to the halide perovskites. The crystal structure¹⁷ and 57 electronic band structure including bandgap¹⁸ and carrier dynamics^{19,20} were found to be 58 highly subjective to the applied pressure. Metallic properties of halide perovskites were also 59 60 reported under applied pressure²¹.

61 While all of these efforts demonstrated interesting strain engineering of halide 62 perovskites, a controllable and scalable method for strain engineering single crystal halide 63 perovskites is still critically needed. The epitaxially strained halide perovskite demonstrated 64 in this study meets this need by realizing the precise control of the strain in terms of 65 magnitude and uniformity. The chemical bonds formed at the interface, rather than the weak 66 van der Waals interactions, not only provide strong epitaxial strain to effectively alter the material structure and properties but also endow stability against environmental fluctuations 67 68 so that the strain can maintain under different temperatures and pressures, which are 69 qualitatively different from the thermally strained and the pressurized perovskites. The 70 magnitude of the strain can be precisely controlled by designing different lattice mismatch 71 rather than the residual strain that shows uncertainty and uncontrollability. Enhanced optical 72 and electrical properties have been shown in the strained halide perovskites. Therefore, this 73 method represents a significant scientific advance compared with other reported studies to 74 strain halide perovskites.

- 75
- 76

77 Supplementary Discussion 2: Characterizing MAPbCl_xBr_{3-x} Substrates and Strain-free 78 α-Formamidinium Lead Iodide (α-FAPbI₃)

Supplementary Fig. 1a shows the X-ray Diffraction (XRD) θ -2 θ scan pattern of strain-free α -FAPbI₃ powder²². For the cubic crystal structure, the lattice parameter can be calculated by:

$\lambda = 2d_{hkl}sin\theta$

where λ is the incident beam wavelength, θ is the angle of incidence, and d_{hkl} is the lattice d-spacing. For strain-free α -FAPbI₃, the (001) peak position is at 13.92° and the corresponding lattice parameter is calculated to be 6.35 Å. All other peaks in the XRD pattern are labeled and the corresponding lattice parameters can be calculated similarly.

Supplementary Fig. 1b shows a collection of the (001) peak locations from mixed methylammonium lead chloride/bromide (MAPbCl_xBr_{3-x}) single crystal substrates, which, regardless of the Cl/Br ratio, are reported to have a cubic structure²³. The peak position shifts to a higher 2θ angle with increasing Cl ratio, indicating a decrease in the lattice parameter.

90 The MAPbCl_xBr_{3-x} substrates are grown by solvent evaporation of different molar ratios 91 of MAPbCl₃ and MAPbBr₃ solutions. With the lattice parameters derived from XRD 92 measurements, the actual compositions of the substrates can be calculated by Vegard's 93 Law^{24} :

$$a_{MAPbCl_{1-x}Br_{x}} = (1-x)a_{MAPbCl_{3}} + xa_{MAPbBr_{3}}$$

94 where $a_{MAPbCl_{1-x}Br_x}$ is the lattice parameter of the mixed crystal, and a_{MAPbCl_3} and 95 a_{MAPbBr_3} are the lattice parameters of MAPbCl_{3.00}Br_{0.00} and MAPbCl_{0.00}Br_{3.00} single crystals, 96 respectively. The Cl/Br molar ratios of the precursors, the composition of the MAPbCl_xBr_{3-x} 97 crystal, and the calculated lattice parameters are summarized in Supplementary Table 1.

- 98
- 99

100 Supplementary Discussion 3: Strained Epitaxial Growth of α-FAPbI₃

Supplementary Table 2 summarizes the (001) XRD peak positions of the epitaxial α -FAPbI₃ on different substrates. All epitaxial samples have a shift of the (001) peak to a lower 2 θ angle compared with the peak position of the strain-free crystal (13.92°), indicating an increase of the out-of-plane lattice parameter due to the in-plane compressive strain. The epitaxial α -FAPbI₃ on MAPbCl_{0.00}Br_{3.00} substrate shows a minimum shift to 13.89°. When 106 more Cl is incorporated into the substrate, the lattice mismatch between α -FAPbI₃ and the 107 substrate increases. The (001) XRD peak of the epitaxial α -FAPbI₃ will further shift to a 108 lower 2 θ angle, indicating a further increase of the out-of-plane lattice spacing and a stronger 109 in-plane compressive strain. The strain values are calculated by comparing the in-plane lattice 110 parameter of strain-free α -FAPbI₃ and epitaxial α -FAPbI₃, showing a tunable strain as high 111 as -2.4%.

112 The epitaxial growth conditions are systematically studied (Supplementary Fig. 1c, d). FAPbI₃ solutions with different concentrations are deposited on the substrates at different 113 114 temperatures for epitaxial growth. Since FAPbI₃ has an inverse solubility in the 115 γ -Butyrolactone (GBL) solvent, high concentration and high temperature will accelerate the crystallization of α -FAPbI₃. In Supplementary Fig. 1c, the (001) peak position of the 116 117 epitaxial α -FAPbI₃ is studied as a function of the growth temperature. The vertical orange line labels the peak position (13.92°) of the strain-free α -FAPbI₃. The results show that 118 119 growth temperatures below 180°C always generate diffraction peaks larger than 13.92°, while 120 growth temperatures above 180℃ can generate peaks smaller than 13.92°. The diffraction 121 peak position reveals the out-of-plane lattice parameter of the epitaxial thin film. When the 122 growth temperature is too high, crystallization of α -FAPbI₃ is fast and many defects are 123 incorporated, which would relax the strain in the α -FAPbI₃. When the growth temperature is 124 too low, the crystallization is too slow and Cl⁻/Br⁻ ions may dissolve from the substrate and 125 re-crystallize into the epitaxial α -FAPbI₃, forming mixed alloys at the interface, although 126 MAPbCl_xBr_{3-x} has an extremely low solubility in GBL. Diffraction peaks larger than 13.92° 127 provide evidence for uniform lattice contraction caused by the incorporation of smaller Br

128 and Cl⁻ ions.

129 The epitaxial growths with different FAPbI₃ precursor concentrations are also 130 investigated (Supplementary Fig. 1d). Similar to the effect of temperature, FAPbI₃ precursor 131 concentrations that are too high will result in fast crystallization and a high defect 132 concentration. Precursor concentrations that are too low will lead to slow α -FAPbI₃ 133 crystallization, and thus the incorporation of Cl⁻/Br⁻ ions that form alloys at the interface.

134

135

136 Supplementary Discussion 4: Quality of the Epitaxial Films

137 The crystalline quality of the substrate is found to have a significant impact on the quality of the epitaxial thin film since defects in the substrates will propagate through the 138 epitaxial layer and relax the strain. The substrate crystal quality prepared using the Inverse 139 Temperature Crystallization (ITC)²⁵ (Extended Data Fig. 1a) and the Slow Solvent 140 Evaporation (SSE) methods (Extended Data Fig. 1b to 1f) are systematically characterized. 141 142 The Full Width at Hall Maximum (FWHM) value in rocking curve measurements 143 characterizes crystal mosaicity. Substrates grown by the SSE method show a much smaller 144 FWHM value (~0.020°) compared with those by the ITC method (~0.084°) due to the 145 extremely slow crystallization speed of SSE, indicating a higher crystal quality of substrates 146 prepared by the SSE than those by the ITC.

147 Extended Data Fig. 1g shows (001) XRD patterns of epitaxial α -FAPbI₃ grown on 148 substrates with high quality (red curve) and low quality (black curve). For α -FAPbI₃ grown 149 on the high-quality substrate, the FWHM of the XRD peak is also smaller than α -FAPbI₃ 150 grown on the low-quality substrate. Additionally, the epitaxial α -FAPbI₃ grown on the 151 high-quality substrate maintains the strained status with a shifted diffraction peak while the 152 epitaxial α -FAPbI₃ grown on the low-quality substrate has a (001) peak close to that of the 153 strain-free sample at 13.92° (position of the dashed line).

Evidence for the strain relaxation and the growth model can also be found by studying 154 155 the surface topography of the epitaxial crystal. Atomic force microscopy is used to 156 characterize topographic features of a fully strained film and a fully relaxed film under the tapping mode. The topography of the fully strained film (Extended Data Fig. 2a) shows a 157 158 smooth surface with small terrains. The stepwise height profile (Extended Data Fig. 2b) 159 corresponds to the red line in Extended Data Fig. 2a. Each step has a height of ~0.64 nm, the same as the height of a strained α -FAPbI₃ unit cell. This reveals that the epitaxial growth of 160 α -FAPbI₃ follows a layer-by-layer model²⁶. Besides, no obvious cracks or pits can be 161 observed, indicating a coherent growth of the epitaxial layer on the mismatched substrate. 162

The areal elastic strain energy will increase with the epitaxial layer thickness, which leads to the formation of defects (e.g., dislocations) that relax the strain energy. Also, the dislocations will glide and propagate to form cracks and pits at the surface of the epitaxial layer. The rough surface of the fully relaxed film shows the existence of such dislocations (Extended Data Fig. 2c). The corresponding height profile shows a very rough surface morphology, which indicates strain relaxation (Extended Data Fig. 2d).

169 α -FAPbI₃ fails to epitaxially grow on substrates with a Cl ratio higher than 50% (i.e., 170 higher Cl content than that in MAPbCl_{1.50}Br_{1.50}), because higher levels of lattice mismatch 171 will dramatically increase the strain energy and make the epitaxial growth less

172	thermodynamically favorable. Supplementary Fig. 2b shows the optical image of growth
173	results on a $MAPbCl_{2.00}Br_{1.00}$ substrate prepared using the same method as the other
174	substrates. In this case, the α -FAPbI ₃ randomly crystallizes on the substrate, without forming
175	a uniform epilayer; most of the black α -FAPbI ₃ crystals undergo a phase transition to yellow
176	δ -FAPbI ₃ due to the phase instability of α -FAPbI ₃ at room temperature.

- 177
- 178

179 Supplementary Discussion 5: Mechanisms of XRD Diffraction Peak Broadening

For XRD diffraction peak broadening, common reasons include²⁷: 1) lattice strain, 2) crystalline dimension, 3) misorientation induced by defects, 4) thermal movement of the atoms around the equilibrium states, and 5) instrumental effects like focusing imperfection. The fourth and fifth reasons are irrelevant to this study.

We attribute the main contributions of the diffraction peak broadening in Fig. 1c to the increased lattice strain and the reduced crystalline dimension rather than the misorientation. Based on the Williamson-Hall equation²⁸, the diffraction peak FWHM is linearly related to the lattice strain and reversely related to the crystalline dimension²⁷. In fact, such diffraction peak broadening is commonly reported in thin film heteroepitaxial growth where the thin epitaxial films usually exhibit broader diffraction peaks due to the lattice strain and low thickness²⁹.

In general, dislocation-induced lattice distortion and misorientation can also lead to broadening of the XRD diffraction peaks. For the strain relaxation of the epitaxial film, however, the diffraction peak broadening due to the dislocations usually leads to a huge broadening that is several times broader than that of the free-standing materials and the fully-strained materials³⁰. We investigate the FWHM of the diffraction peaks in the epitaxial α -FAPbI₃ thin film under different strains. Results show that the diffraction peak FWHM of the free-standing single crystals is ~0.05° while the diffraction peak FWHM of the epitaxial α -FAPbI₃ thin film is ~0.07°, suggesting a small broadening rather than the large broadening by the strain relaxation (Supplementary Fig. 3a).

200 We study the diffraction peak FWHM of the strained and the strain-relaxed α -FAPbI₃ 201 thin films in Extended Data Fig. 1g. Note that in this case, we exclude the influence of the thickness-induce diffraction broadening by using films with the same thickness. Strain is 202 203 relaxed by adopting a substrate with a high density of dislocations for the epitaxial growth. 204 The XRD diffraction patterns shown in Extended Data Fig. 1g indicates that the strained 205 epitaxial α-FAPbI₃ thin film shows a shift to the lower diffraction angle due to the in-plane 206 compressive strain compared with that of the strain-relaxed epitaxial α -FAPbI₃ thin film. A broadening effect due to the high dislocation density of the strain-relaxed epitaxial α -FAPbI₃ 207 thin film is also shown. Statistical study of the diffraction peak FWHM (Supplementary Fig. 208 209 3b) shows that the diffraction peak of the strain-relaxed α -FAPbI₃ is much broader (FWHM~0.25°) than that of the strained α -FAPbI₃ (FWHM~0.07°). Therefore, we can 210 211 conclude that the broadening in the XRD diffraction peak in Fig. 1c is not due to strain 212 relaxation.

213

214

215 Supplementary Discussion 6: Raman Spectroscopy and Simulation

10

1. Discussion of the Raman spectroscopy measurement

Full Raman spectra of the strain-free (Supplementary Fig. 4a) and the -2.4% strained (Supplementary Fig. 4b) α -FAPbI₃ show that there is only one peak in the region between 0 cm⁻¹ and 1200 cm⁻¹, which can be attributed to the vibration of Pb-I bonds^{22,31}. Note that the broad shoulder peak at ~250 cm⁻¹ in the strain-free sample is attributed to the Pb-O bond from the oxidation of Pb-I bond induced by the incident laser³¹. During the fitting process, the spectra were fitted with both Pb-I and Pb-O peaks, while only the Pb-I peaks were shown in Fig. 1f.

Raman spectroscopy is also used to study the substrates (Supplementary Fig. 4e) using a 488-nm laser as the excitation source. No Raman signals can be detected from these substrates in the wavenumber range of interest. Therefore, all Raman signals in this study are originated from the epitaxial thin film.

228 Thickness-dependent Raman study is based on epitaxial α -FAPbI₃ thin films on 229 substrates with the same composition. The results show that increasing the epitaxial thin film 230 thickness will cause strain relaxation (Supplementary Fig. 4f). The trend is similar to the 231 strain-dependent Raman spectra in Fig. 1e.

232

233 **2. Raman spectra simulation and peak broadening**

The peaks are fitted, and the peak broadening can be attributed to the emergence of a shoulder peak due to the strain-induced out-of-plane bond elongation. This phenomenon is also reported in other strain-dependent Raman studies³²⁻³⁴. To further confirm that the peak broadening in the Raman spectra originates from the strain-induced lattice deformation, we simulate the Raman spectra with first-principles calculations by the CASTEP in Materials Studios. The Raman spectra are simulated from 100 cm⁻¹ to 400 cm⁻¹ to compare with the experimental data.

241 Supplementary Fig. 4c shows the comparison between the experimental and simulated 242 Raman spectra of the strain-free α -FAPbI₃ lattice. Simulated results show a Raman peak at 124 cm⁻¹, which can be assigned to the stretching of the Pb-I bond. This is correlated with the 243 Raman peak at $\sim 136 \text{ cm}^{-1}$ in the experimental result. Underestimations of the simulated 244 Raman peak wavenumbers are commonly reported³⁵⁻³⁷. Possible explanations may be that the 245 246 anharmonicity of the bonds and the van der Waals interactions (between the inorganic cages and organic cations) can affect the simulated results³⁶. Besides, the assignment of the Pb-I 247 stretching peak also agrees with the reported studies^{38,39}. Meanwhile, we also identify a weak 248 peak at 377 cm⁻¹ from the simulated Raman spectrum, which can be assigned to the bending 249 of the FA⁺ cation. However, this peak vanishes in the experimental spectrum, probably 250 251 because the organic cations in halide perovskites are highly dynamic in the inorganic framework⁴⁰⁻⁴². The reorientation of the cation will lead to the weakening of the peak under 252 room temperature⁴³. This is also the reason why low-temperature Raman, which can freeze 253 the orientation of the organic cation, can resolve the signal from the organic cations in halide 254 perovskites^{36,43}. Note that the weak Raman band at \sim 250 cm⁻¹ from the experimental Raman 255 spectrum is assigned to the Pb-O bond induced by the laser oxidation³⁸. 256

257 We then apply -2.4% strain to the α -FAPbI₃ lattice and comparison between the 258 experimental and simulated Raman spectra of the strained α -FAPbI₃ lattice is shown in Supplementary Fig. 4d. An obvious peak splitting due to the in-plane Pb-I bond compression and the out-of-plane Pb-I bond stretching can be observed from the simulated Raman spectrum. This agrees with the experimental Raman peak, which shows obvious broadening due to the peak splitting. In fact, the strain-induced Raman peak splitting is also reported in other materials³²⁻³⁴. We also notice the increase of the peak intensity, which is due to the breakage of the Raman-inactive cubic symmetry⁴⁴.

265 Therefore, we demonstrate that the Raman peak broadening originates from the 266 strain-induced peak splitting. Strain leads to the in-plane compression and out-of-plane 267 stretching of the Pb-I bonds in the α -FAPbI₃ lattice, splitting the Pb-I stretching peak, and 268 broadening the peak FWHM.

269

270

271 Supplementary Discussion 7: First-Principles Calculations of the Strained α-FAPbI₃

272 First-principles calculations allow a better understanding of the structural deformation 273 and prediction of any emerging new properties. Cubic α -FAPbI₃ unit cells are calculated with the N-N axis of the FA⁺ cation along (001), (101), and (111), respectively (left panel of 274 Extended Data Fig. 3a). These three low Miller index directions represent FA's typical 275 276 orientations, and their calculated total energies could reveal potential orientation preferences. 277 As the first step, we optimized the cubic lattice parameter *a* for each orientation to obtain the lowest total energy. Our calculations show a = 6.35 Å for the FA along (001), a = 6.40 Å for 278 the FA along (101), and a = 6.37 Å for the FA along (111). The optimized structure with the 279 280 FA along (101) has the lowest total energy of -52.73 eV, and the optimized structure with the FA along (001) shows the highest total energy of -52.68 eV. The total energy difference between these two structures is within 50 meV, and thus the structural model with FA along (101) direction was used in our calculations.

284 Then we applied bi-axial strains in the *ab*-plane of the optimized structure for each 285 orientation. The range is from 3% tensile strain to -3% compressive strain. The strained cells 286 keep their original FA orientation after optimization along the z-direction. For bandgap 287 calculations, spin-orbit coupling (SOC) was incorporated due to the heavy element Pb, and hybrid functionals within Heyd-Scuseria-Ernzerhof (HSE) formalism with 25% Hartree-288 Fock (HF) exchange were employed. The calculated bandgap energy (lower right of 289 290 Extended Data Fig. 3a) and cell volume (upper right of Extended Data Fig. 3a) are displayed 291 as a function of the bi-axial strain. The cell volume decreases as the strain changes from 292 tensile to compressive for each FA orientation. This is a result of the decreased a and b and 293 slightly increased c. The bandgap decreases as well when the strain changes from tensile to 294 compressive for each FA orientation.

Extended Data Fig. 3c shows the out-of-plane lattice deformation with different in-plane strain levels. A Poisson's ratio of around 0.3 can be calculated, consistent with the experimental value by reciprocal space mapping. Meanwhile, C-N and C=N bond lengths in FA^+ cation with different strain levels (Extended Data Fig. 3d) show no obvious changes with the strain, indicating a weak interaction between the FA⁺ cation and the inorganic Pb-I framework.

301

302

303 Supplementary Discussion 8: Bandgap Reduction of the Strained α-FAPbI₃

Fig. 2a shows photoluminescence (PL) spectra of the epitaxial α -FAPbI₃ thin films at different strain levels. With increasing the in-plane compressive strain, a clear redshift can be seen from ~1.523 eV to ~1.488 eV. To confirm whether the redshift of PL peaks is caused by the in-plane compressive strain, several possible mechanisms are discussed.

308 It has been reported that as the perovskite thickness decreases, surface charges will 309 induce depletion micro-electric field near the perovskite surface and increase the bandgap, which causes the PL to blueshift^{45,46}, opposite to this case here. Thus, this surface field effect 310 can be ruled out. We also rule out the possibility of reabsorption of short-wavelength photons 311 312 by the material itself, which may cause PL redshift. This effect is only observed in bulk crystals and thick films (>1 µm in thickness) and can be neglected for <100 nm films in Fig. 313 2a⁴⁷. Additionally, the possible incorporation of Br or Cl element is excluded since those 314 foreign atoms will lead to PL blueshift⁴⁸. Hence, we can conclude that the PL redshift is due 315 316 to the compressive strain generated by the lattice mismatch.

The absorption spectrum is also studied to validate the bandgap measured by PL. Note that improper measurement methods can lead to inaccurate results in both absorption and PL. For example, the absorption spectrum of thick materials obtained by the transmission mode cannot distinguish the light being absorbed or being scattered due to the large thickness of the sample⁴⁹. Meanwhile, PL emission peaks show dependence on the illumination intensity⁵⁰ as well as material dimensions⁴⁵. Therefore, absorption and PL measurements can be used to validate each other. Due to the large thickness (1 to 2 mm) and the high absorption coefficients ($\sim 10^5$ cm⁻¹) of the substrates, light transmittance cannot be detected⁵¹. Therefore, we adopt the reflection mode of UV-VIS to detect the absorption onset of the samples. The collected absorption results (Extended Data Fig. 3b) also demonstrate a red-shift when the strain goes up, which is consistent with the PL measurements.

329 Meanwhile, we notice that there is a quantitative discrepancy between the calculated 330 bandgap reduction (~120 meV) and the experimental bandgap reduction (~35 meV) under 331 -2.4% compressive strain. Note that the first-principle calculations of the strain-dependent bandgap serve as a general prediction. The main purpose is to predict the trend of the change 332 333 instead of showing quantitative agreement with experimental results. Due to the 334 approximation in the exchange-correlation functionals, deviation in the order of 10^2 meV in 335 calculated bandgap energy from experiments is within a reasonable and tolerable range. Additionally, the geometry approximation of the strained lattice model doesn't reveal the 336 337 actual deformation of the strained lattice. For example, the lattice parameters a and b are set 338 to be different values to mimic different in-plane biaxial strain levels in the simulation, which 339 changes the bond length between atoms. In real lattice deformation, however, the bond angle will also change to accommodate the in-plane biaxial strain (e.g., by octahedral rotation). 340 341 Therefore, the calculated values can be different from the experimental values.

342

343

344 Supplementary Discussion 9: Emission Peaks Broadening of the Strained α-FAPbI₃

345 PL FWHM of the epitaxially strained α -FAPbI₃ thin film is shown to increase with the

strain (Supplementary Fig. 5). There are multiple possibilities origins of the PL broadening. 346 347 We can first rule out the influence of the domain size because the sample is a single domain thin film⁵². For semiconductors, emission linewidth broadening is governed by charged 348 349 carrier-phonon coupling, including crystalline quality, acoustic phonon scattering, optical phonon scattering, and impurity⁵³. In semiconductors with heterojunctions, charged carrier 350 351 transfer can also take place with specific band structure at the interfaces. Such charged carrier transfer usually leads to carrier quenching without direct recombination⁵⁴⁻⁵⁶, and emission 352 peak shifting due to the energy change⁵⁷, while very few reported PL broadening due to the 353 carrier relaxation⁵⁸. Here, we discuss the possible emission peak broadening mechanism in 354 the epitaxially strained α -FAPbI₃ thin films. 355

356

357 1. Charge transfer

358 The α -FAPbI₃ grown on MAPbBr₃ is analyzed as an example. α -FAPbI₃ has a very 359 different band structure compared with MAPbBr₃ in terms of bandgap, valance band maximum (VBM), and conduction band minimum (CBM) as shown in Supplementary Fig. 6. 360 361 The heterojunction shows a straddling band alignment where the charged carrier transfer is only allowed from the larger bandgap side to the smaller bandgap side when the larger 362 bandgap side is excited. During the PL measurement in this study, a 633-nm laser 363 364 (corresponding to 1.95 eV) was used for exciting the epitaxial layer (bandgap 1.50 eV) without exciting the substrates (bandgap 2.30 eV). Upon absorption, electrons in the 365 α -FAPbI₃ will be excited to the conduction band while the MAPbBr₃ remains unexcited. 366
367 Here, the large barrier between α -FAPbI₃ and MAPbBr₃ blocks the carrier transfer from the 368 α -FAPbI₃ to the MAPbBr₃ across the interface (Supplementary Fig. 6).

This analysis also applies to other substrates MAPbCl_xBr_{3-x} in this study with different compositions from MAPbBr₃. When incorporating more Cl into the MAPbBr₃ substrate, the bandgap will further increase by lifting up the CBM and pushing down the VBM, and the energy barrier between the α -FAPbI₃ and the substrates will be even larger⁵⁹. Thus, interfacial charge transport will be even less favorable.

374 Additionally, we also consider the carrier transfer from the MAPbBr₃ to the α -FAPbI₃. 375 Since the MAPbBr₃ remains unexcited due to the large bandgap, the intrinsic electrons are 376 extremely minor compared with the excited carrier in α -FAPbI₃. Therefore, we exclude the 377 possibility of carrier transfer from the MAPbBr₃ to the α -FAPbI₃.

378 Considering that the laser for the PL measurement doesn't excite the carriers in the 379 substrate, as well as the large energy barrier that blocks the interfacial carrier transfer 380 between the epitaxial layer and the substrate, we draw the conclusion that the charged carrier 381 transfer between the epitaxial layer and the substrates will not take place in the PL 382 measurements and, therefore, will not contribute to the PL broadening.

383

384 **2. Emission broadening by charged carrier-phonon coupling**

For inorganic semiconductors, emission linewidth is associated with different mechanisms of scattering between charged carriers and phonons or impurities, which can be expressed as⁶⁰:

$$\Gamma(T) = \Gamma_{\rm imp} + \Gamma_{\rm ac} + \Gamma_{\rm LO} + \Gamma_0$$

18

where $\Gamma(T)$ is the temperature-dependent emission linewidth, Γ_{imp} is the broadening terms of scattering with impurities, Γ_{ac} and Γ_{LO} are the broadening terms of the scattering from the acoustic phonons and the optical phonons, and Γ_0 is a temperature-independent broadening term associating with the scattering due to the structural disorder, respectively.

392

393 2.1 Impurity

Experimentally speaking, as mentioned above, impurity during epitaxial growth can be controlled by adopting the same growth solutions and epitaxial growth protocol. Therefore, the impurity in the epitaxial films will have a similar concentration. The influence on the PL FWHM from impurity variation will be very minimal.

398 Additionally, theoretical studies have identified that impurity scattering should be an inhomogeneous broadening term for PL FWHM in halide perovskites^{53,61} and other 399 semiconductors⁶², which should show a weak temperature dependence. This is because 400 impurities can lead to local electric field heterogeneity, and the existence and scattering of 401 402 impurities are independent on the temperature. The PL FWHM will not change much with 403 the temperature. However, experiments have shown a homogeneous broadening behavior of the PL FWHM of halide perovskites, with a strong temperature dependency^{53,61}. Therefore, 404 405 the contribution of impurity-induced emission broadening of the PL FWHM is considered to 406 be minor in halide perovskites.

407

408 **2.2 Acoustic phonon scattering**

409 As we mentioned above, the temperature-dependent PL FWHM of halide perovskites 410 shows a homogeneous behavior, which can be attributed to optical phonon and acoustic phonon scattering^{53,61}. This is due to the fact that acoustic and optical phonons are strongly 411 412 temperature-dependent. However, the contribution of the acoustic scattering Γ_{ac} in the emission broadening is also demonstrated to be minor in halide perovskites⁶¹. According to 413 414 the expression equation of the acoustic scattering, Γ_{ac} is linearly proportional to the temperature⁶¹. However, the experimental temperature-dependent PL FWHM of halide 415 perovskites, especially FAPbI₃, behave nonlinearly with temperature⁶¹. This is due to the fact 416 417 that the polar Pb-I bond mainly generates optical phonons. Therefore, the contribution of the 418 acoustic phonon scattering to the emission linewidth broadening is considered to be minor, 419 and the optical phonon scattering is the dominating factor.

420

421 **2.3 Temperature-dependent PL FWHM study**

422 As demonstrated by extensive prior works^{53,61,63,64}, the above equation can be expressed 423 in the following form, with the consideration that the acoustic phonon scattering and the 424 impurity scattering contribute little to the emission linewidth in halide perovskites:

$$\Gamma(T) = \Gamma_{LO} + \Gamma_0 = \frac{\gamma_{LO}}{e^{(\frac{E_{LO}}{k_bT})} - 1} + \Gamma_0$$

425 where γ_{LO} is the charged carrier-optical phonon coupling constant, E_{LO} is the energy of the 426 optical phonon, and k_b is the Boltzmann constant. Based on this equation, we studied the 427 relationship between PL FWHM and the temperature for the strained and the strain-free 428 α -FAPbI₃ (Extended Data Fig. 4a, b). A clear redshift can be observed while the intensity of 429 the emission peak increases with reducing the temperature due to the reduced scattering 430 between the phonon and carriers at low temperatures. To better reveal the change in bandgap 431 and FWHM as a function of the temperature, we normalize each of the PL peak intensity 432 (Extended Data Fig. 4c, d). With decreasing the temperature, both strained and strain-free 433 α -FAPbI₃ showed a bandgap narrowing, which is attributed to the contraction of the lattice. 434 Meanwhile, the PL FWHM exhibits a uniform narrowing with decreasing the temperature. 435 Extended Data Fig. 4e, f show the PL FWHM as a function of the temperature for a -2.4% 436 strained and a strain-free sample, respectively.

437 Data were fitted with the equation introduced above. Fitted results indicate the main 438 increment of Γ_0 in the strained sample can be attributed to the increased scattering by the 439 crystalline quality reduction. Meanwhile, the increment of both γ_{LO} and E_{LO} suggests an 440 enhanced charged carrier-optical phonon coupling and higher phonon energy in the strained 441 lattice, which can be attributed to the strain-induced lattice deformation⁶⁵. Therefore, we can 442 conclude that the PL FWHM difference of the strained and the strain-free sample mainly 443 comes from the increased scattering by the strain-induced crystalline quality reduction.

444 To sum up, we discussed several possible mechanisms that might have led to the PL 445 peak broadening and focused on the crystalline quality and charged carrier-optical phonon 446 coupling. By analyzing the temperature-dependent PL FWHM of both strained and strain-free 447 α -FAPbI₃, the calculation results demonstrate that the PL broadening with strain is caused by 448 the strain-induced crystalline quality reduction (major) and enhanced optical phonon 449 scattering (minor).

450

451

452 Supplementary Discussion 10: Strain Relaxation of the Epitaxial α-FAPbI₃

453 Confocal PL spectroscopy is used to study the PL emission with different focal points 454 inside a 3 μ m thick -2.4% strained epitaxial α -FAPbI₃ (Fig. 2b). Results show a PL redshift 455 from ~1.523 eV to ~1.479 eV with the focal point moving from the film surface to the 456 film/substrate interface. The large discrepancy indicates the strain is relaxed in the thick 457 α -FAPbI₃ film. Here, we study the possible elastic strain relaxation due to the soft nature of 458 halide perovskite and the plastic strain relaxation from the strain-induced dislocation.

459

460 **1. Elastic strain relaxation**

461 We study the elastic relaxation of the epitaxial α -FAPbI₃ thin film using finite element 462 analysis (FEA) simulations. The simulation results are shown in Supplementary Fig. 8 where an α -FAPbI₃ thin film with a 30 μ m \times 30 μ m \times 3 μ m dimension in $l \times w \times t$. Elastic constants 463 C_{11} , C_{12} , and C_{44} of α -FAPbI₃ come from the reported literature⁶⁶. Different biaxial 464 465 compressive strains (-1.2% and -2.4%) are applied at the bottom of the α -FAPbI₃ to simulate the interfacial strain. Plastic relaxation from the dislocations is ignored in the simulation to 466 467 focus on the influence of the elastic relaxation only. Supplementary Fig. 8a, b show the planar stress distribution from the bottom view of the -1.2% and -2.4% strained α -FAPbI₃, 468 469 respectively. Supplementary Fig. 8c, d show the vertical stress distribution from the cross-sectional view of the -1.2% and -2.4% strained α -FAPbI₃, respectively. 470

471 Simulated results indicate a uniform strain distribution throughout the entire epitaxial 472 α -FAPbI₃ thin film. We further study the thickness-dependent stress distribution along the 473 vertical direction (Supplementary Fig. 8e, f), as labeled by the blue line and the red line in the 474 Supplementary Fig. 8c, d, respectively. From the results, the strain maintains almost the same 475 along with the thickness. For a sample thickness of 3 µm, the elastic relaxation is calculated to be 0.096% and 0.093% for -1.2% and -2.4% strained α-FAPbI₃, respectively. The small 476 477 discrepancy between the elastic relaxation under the two strain magnitudes is due to the 478 numerical dispersive error because the FEA simulation uses a dispersive model for approximation⁶⁷. Therefore, the elastic relaxation in the epitaxially strained α -FAPbI₃ is not 479 as prominent as we expected, due to the small thickness (in the range of hundreds of 480 481 nanometers to a few micrometers) used in this study. Halide perovskites are in fact still brittle solids even though they are softer in nature than other conventional semiconductors 68 . 482

483

484 **2. Plastic strain relaxation**

In heteroepitaxial growth, strain usually relaxes plastically rather than elastically. The calculations of the critical thickness where the dislocations form and relax the strain have been determined theoretically and experimentally. There are two models that have been widely used for the critical thickness calculations: the Matthews and Blakeslee (MB) model⁶⁹ and the People and Bean (PB) model⁷⁰.

The MB model is a mechanical equilibrium model that stems from the force balance of dislocations. In this model, the critical thickness is defined as the thickness when the strain force is equal to the dislocation tension force and can be expressed as:

$$h_c = \frac{b(1 - v\cos^2\alpha)}{8\pi f(1 + v)\cos\lambda} [1 + ln(\frac{h_c}{b})]$$

493 where h_c is the critical thickness, b is the length of the Burger's vector, v is the Poisson's

494 ratio, α is the angle between the Burger's vector and the line vector for the dislocation, f is 495 the misfit strain, and λ is the angle between the Burger's vector and the line in the interface 496 plane that is perpendicular to the intersection of the glide plane with the interface.

The PB model is an alternative prediction method based on the energy equilibrium that is widely studied and experimentally proved. In this model, the critical thickness is defined as the thickness where the strain energy is equal to the dislocation formation energy and can be expressed as:

$$h_c = \frac{(1-v)b^2}{(1+v)(16\sqrt{2}\pi af^2)} ln(\frac{h_c}{b})$$

501 where a is the lattice constant of the material.

502 Many studies show large discrepancy with the MB model. Even the epilayer is thicker 503 than the MB limit, the dislocations are still absent⁷¹. Therefore, the MB model underestimates 504 the critical thickness. The MB model may not give a quantitatively matched result. Besides, 505 α and λ in PB need to be determined for different dislocations. However, the PB model 506 gives a closer estimation of the critical thickness⁷¹, and will therefore be used in this study.

507 We first study the thickness-dependent strain relaxation of the epitaxial α -FAPbI₃ thin 508 films with different strains by in-plane XRD. In-plane XRD measures the in-plane lattice 509 constant of the crystalline materials, which can be directly used to calculate the strain and 510 contains information about the plastic strain relaxation in heteroepitaxy. Extended Data Fig. 511 5a, b show the thickness-dependent in-plane XRD patterns of two representative epitaxially strained α -FAPbI₃ thin films with -1.2% and -2.4% strain, respectively. The -1.2% strained 512 epitaxial α -FAPbI₃ thin film with a thickness of 200 nm shows obvious plastic strain 513 514 relaxation (Extended Data Fig. 5a), as evidenced by the peak shifting (to a lower angle, the vertical line labels the fully strained peak position) and broadening. For the -2.4% strained epitaxial α -FAPbI₃ thin films, plastic relaxation can be measured in films above 50 nm with obvious peak shifting and broadening (Extended Data Fig. 5b). The vertical line labels the fully strained peak position. Besides, we can also obtain the thickness-dependent in-plane lattice constants, based on which we can calculate the in-plane strain by comparing with the in-plane lattice constant. The degree of plastic strain relaxation can be quantified by comparing the local in-plane strain with the highest measured in-plane strain.

522 Quantification of the degree of plastic strain relaxation is done by calculating the 523 relaxation constant *R*:

$$R = \frac{a_{measured} - a_{strained}}{a_{\alpha - FAPbI_3} - a_{strained}}$$

where $a_{measured}$ is the measured in-plane lattice constant at different thicknesses, $a_{strained}$ 524 is the in-plane lattice constant with maximum strain, and $a_{\alpha-FAPbI_3}$ is the lattice constant of 525 526 the strain-free α -FAPbI₃. For the epitaxial film with the same substrate but different 527 thicknesses, $R (0 \le R \le 1)$ reveals the relationship between the film thickness and the 528 degree of plastic strain relaxation. For R equals to one, the epitaxial film is considered as 529 fully-relaxed. Otherwise, the film is considered as partially-relaxed. At relatively low thickness, R remains at zero without any relaxation. With increasing thickness, R will 530 531 gradually increase due to the formation of dislocations, which plastically relax their 532 surrounding strain.

533 The thickness-dependent relaxation constants of each epitaxial α -FAPbI₃ with different 534 substrates (i.e., different strains) are calculated and shown in Extended Data Fig. 5c. The 535 error bars label the range of calculated *R* of the films with the same substrate and thickness. 536 Results show that the film with a -2.4% strain quickly relaxes at the thickness of ~ 50 nm 537 while the film with -0.8% start to relax at ~200 nm. Note that the thinnest film we can obtain is ~50 nm and we assume that the thin layer α -FAPbI₃ will be fully strained without 538 539 relaxation. Critical thicknesses are extracted from Extended Data Fig. 5c where R is larger 540 than 0 and fitted with both the MB and PB models (Extended Data Fig. 5d). Results show 541 that the critical thickness decreases with increasing the strain. Our experimental results agree 542 more with the predicted PB model, indicating that the plastic strain relaxation due to the dislocations generated during the epitaxial growth is the dominating relaxation mechanism. 543

544 Confocal PL spectroscopy is used to study the PL emission with different focal points inside a 3 μ m thick -2.4% strained epitaxial α -FAPbI₃ (Fig. 2b). Results show a PL redshift 545 546 from ~1.523 eV to ~1.479 eV with the focal point moving from the film surface to the 547 film/substrate interface. Besides, we also measured a strain-free bulk α -FAPbI₃ crystal 548 sample and a 3 µm thick mixed sample (Supplementary Fig. 7). Note that the mixed sample 549 came from the mixed epitaxial growth with low temperature and low concentration in Supplementary Fig. 1. By using a low growth temperature and low concentration solution, the 550 551 crystallization speed of the epitaxial film will be significantly retarded. The long-time contact of the substrate and solution will lead to a slow ion exchange between them and, therefore, 552 553 form an epitaxial film containing mixed Cl and Br. In the case of Fig. 2a, we adopt an 554 optimal growth condition with high temperature (180 °C) and high concentration (1.2 mol L^{-1}) 555 to achieve a fast crystallization speed, so that the α -FAPbI₃ crystals will nucleate on the 556 substrate, even before the Cl and Br ions dissolve and get mixed in the solution. The obtained interface will be clear and the epitaxial α -FAPbI₃ sample will be highly strained. The 557

strain-free sample shows a much less obvious PL peak redshift from ~1.523 eV to ~1.516 eV (Supplementary Fig. 7a), which can be attributed to reabsorption as discussed above. For the mixed sample grown under low temperature and low concentration (Supplementary Fig. 7b), the PL peak at the sample surface is at ~1.542 eV, indicating incorporation of Cl and Br elements from the substrate. With increasing focal depth to the film/substrate interface, the PL peak blueshifts to below 1.550 eV, which indicates a higher degree of mixing.

Film thickness-dependent PL measurements are based on samples at -2.4% strain with different epitaxial film thicknesses (Supplementary Fig. 9). A 633-nm laser with the standard mode is used as the excitation source to study the overall emission behavior of the film at all depths. The PL peak position shows a strong film thickness dependency. When the α -FAPbI₃ film thickness increases, the PL emission peak shifted from ~1.479 eV back to 1.523 eV, the same as that of the strain-free α -FAPbI₃, which indicates the strain has been fully relaxed.

570

571

572 Supplementary Discussion 11: Temperature-Dependent Bandgap of the Strained 573 α-FAPbI₃

574 Due to the soft nature, external stimuli (i.e., temperature, pressure) can effectively alter 575 the lattice structure of halide perovskites, and, therefore, change the electronic band 576 structures^{18,20,72}. Under such considerations, temperature-dependent PL was studied on both 577 epitaxial α -FAPbI₃ and free-standing α -FAPbI₃. Epitaxially grown thin films are subjected to 578 the lattice deformation of the substrates due to the strong chemical bonds at the interface and 579 the much bulkier size of the substrate. In this case, the epitaxial film will adopt a similar

thermal expansion coefficient α_t to that of the substrate⁷³. A reported study has shown that 580 the α_t of halide perovskites are subjected to the molecular radius of halides. Therefore, the 581 I-based perovskite epitaxial layer will have a larger α_t due to the large radius of I⁻ than the Br⁻ 582 and Cl⁻ based halide perovskite substrate⁷⁴. The epitaxial α -FAPbI₃ on a Br⁻ and Cl⁻ based 583 substrate exhibited a reduced temperature dependency compared with the freestanding 584 585 α -FAPbI₃. Additionally, if the substrate has a larger α_t than that of the strained layer, we 586 should expect to see the strained sample has a stronger temperature dependence than that of 587 the free-standing sample.

588

589

590 Supplementary Discussion 12: Band Structure of the Strained α-FAPbI₃

591 UPS measurements are carried out on epitaxial α -FAPbI₃ films with different strain 592 levels. Extended Data Fig. 6a shows the cutoff energy region and Extended Data Fig. 6b 593 shows the valence band region of the α -FAPbI₃. Take the UPS spectrum of the strain-free 594 α -FAPbI₃ as an example, the position of the electron affinity (Fermi level) *versus* vacuum is 595 the difference between the high binding energy cutoff and the radiation energy of He I (21.22 596 eV):

597 16.09 eV-21.22 eV=-5.13 eV

598 The low binding energy cutoff (0.62 eV) determines the position of Valence Band 599 Maximum (VBM). Therefore, the position of the VBM relative to the vacuum level is:

600 -5.13 eV-0.62 eV=-5.75 eV

601 Considering the measured optical bandgap of ~1.51 eV (Fig. 2a), the Conduction Band

602 Minimum (CBM) is determined to be -4.24 eV. This also suggests that the Fermi level is 603 closer to the VBM than to the CBM, and therefore the strain-free α -FAPbI₃ is p-type. 604 Similarly, all other strained epitaxial thin films show a p-type character.

Additionally, the results show that the valence band is pushed up by 50 meV while the CBM is only pushed up by 15 meV when strain increases from 0% to -2.4%. The reason why VBM is pushed up more than the CBM by the biaxial in-plane compressive strain is because the compressed PbI₆ octahedron contributes more to the VBM than the CBM. The VBM is composed of the coupled Pb 6*s* and I 5*p* orbitals that form the PbI₆ octahedral, while the CBM is mostly nonbonding localized states of Pb *p* orbitals⁷⁵.

- 611
- 612

613 Supplementary Discussion 13: Effective Mass Calculations and Carrier Mobility 614 Characterizations of the Strained α-FAPbI₃

615 **1. Effective mass calculations**

616 To investigate the effect of strain on carrier dynamics in α -FAPbI₃, we analyzed the variation of charged carrier mobility via predicting effective masses of charged carriers from 617 618 first-principles calculations. In the calculations, the mean free time of carriers was assumed to 619 be a constant, and the reversely proportional relationship between the effective mass and 620 charged carrier mobility was used. Carrier effective masses are determined by the curvature of the highest energy at the VBM for holes and lowest energy at the CBM for electrons in the 621 622 k space. Figure 3a shows the calculated electron and hole effective masses of α -FAPbI₃ under different strain levels. Electronic band structures of α -FAPbI₃ under 3%, 0%, and -3% are 623

also shown in the lower panels of Fig. 3a. Results indicate that the hole effective mass m_h^* 624 decreases when strain goes from tensile to compressive, while the electron effective mass m_e^* 625 barely changes with the strain. The trend of m_h^* can be revealed from the curvature of the 626 highest energy point of the VBM, which gets less dispersive with increasing compressive 627 strain. This is due to the fact that the VBM that determines m_h^* mainly consists of Pb 6s and I 628 629 5p orbitals. Under tensile strain, the distance between Pb and I atoms increase and therefore 630 the Pb-I bond interaction is weakened, thus leading to the increase of effective mass. In contrast, the hole mobility will increase under compressive strain due to the enhanced Pb-I 631 632 bond interaction and the decreased effective mass. However, the CBM that determines the 633 electron effective mass mainly consist of Pb p orbitals is less sensitive to the deformation of Pb-I bonds, which is why m_e^* barely changes with applied strain¹⁵. 634

635

636 2. Interfacial carrier transfer and Hall effect measurements

Hall effect is used to measure the strain-dependent carrier mobility of the epitaxial 637 α -FAPbI₃ thin films. Before the measurement, we study the possible carrier collection from 638 the substrates since the substrates are halide perovskites with high carrier mobility as well. 639 We first analyze the device structure with the FEA simulation. The schematic device 640 641 structure is shown in Supplementary Fig. 10a where four Au electrodes are deposited with a 642 layer of Parylene-C beneath. The Parylene-C serves as the insulating layer to prevent the carrier collection from the substrate to the electrodes. To better understand the carrier transfer 643 between the epitaxial layer and the substrate, we also study the band alignment between them 644 (Supplementary Fig. 10b). Herein, α -FAPbI₃ and MAPbBr₃ are analyzed as an example. 645

 α -FAPbI₃ has a very different band structure compared with MAPbBr₃ in terms of bandgap, 646 valance band maximum (VBM) as well as conduction band minimum (CBM). For α -FAPbI₃, 647 648 VBM and CBM are determined to be -5.75 eV and -4.25 eV by the ultraviolet photoelectron 649 spectroscopy, respectively. For MAPbBr₃, VBM and CBM are determined to be -6.20 eV and -3.90 eV from the literature⁷⁶. For the Hall measurement, the injected carriers are subject to 650 651 the Lorentz force applied by the vertical magnetic field and are accumulated at the diagonal electrodes to build up the Hall voltage. However, the large energy barrier at the 652 653 heterojunction interface blocks the carrier injection from the α -FAPbI₃ to the MAPbBr₃. Therefore, there is a very low concentration of free carriers in the substrate that can hardly 654 655 generate a significant Hall voltage during the measurement. This analysis also applies to 656 other substrates MAPbCl_xBr_{3-x} in this study with different compositions from MAPbBr₃. 657 When incorporating more Cl into the MAPbBr₃ substrate, the bandgap will further increase by lifting up the CBM and pushing down the VBM, and the energy barrier between the 658 α -FAPbI₃ and the substrates will be even larger⁵⁹. Thus, interfacial charge transport will be 659 660 even less favorable. Additionally, we also exclude the free carrier transfer from the MAPbBr₃ to the α -FAPbI₃. 661

We then simulate the current distribution within the device by FEA. We also intend to quantify the current density in both the epitaxial layer and the substrate to study the contribution of the substrate to the Hall measurement. With the combined energy diagram and the electric field distribution, we simulate the current distribution in the device (Supplementary Fig. 10c upper panel). The simulation results show that the current distribution is completely different from the electric field distribution. Current density in the

epitaxial layer (9.8 A m^{-2}) is much higher than that of the substrate (0.4 A m^{-2}), which means 668 669 that the large energy barrier between the epitaxial layer and the substrate, as well as the 670 minimal vertical electric field distribution and the insulation of the Parylene-C, minimizes the carrier injection to the substrate. A closer look at the area that is close to the electrode 671 suggests that the carrier injection to the substrate is indeed prohibited (Supplementary Fig. 672 673 10c lower panel, red arrows indicate the direction of the current flow). To quantify the ratio 674 of the current in the substrate to that in the epitaxial layer, we study the current density along the vertical orange line where the current flows horizontally (at a steady state). 675 Supplementary Fig. 10d shows the vertical current density distribution along the vertical 676 677 orange line where the heterostructural interface locates at 500 nm from the bottom (0 nm). The ratio of current density across the interface is shown to ~ 24.5 :1 where the epitaxial layer 678 is 9.8 A m⁻² and the substrate is 0.4 A m⁻². By integrating the area below the current 679 distribution curve, we obtain the ratio of the current density in the substrate to the total 680 current density along the vertical line to be 0.8%. Therefore, we conclude that the carrier in 681 the substrate is negligible compared with that in the epitaxial layer, and we attribute this 682 683 result to the large energy barrier between the epitaxial layer and the substrate, as well as the 684 minimal vertical electrical field distribution and the insulation of the Parylene-C layer.

685 Without the concern of possible carrier collection from the substrates, we perform Hall 686 effect measurement to the epitaxial α -FAPbI₃ thin films under different strains. Measurement 687 results also show p-type character, which is consistent with the UPS results. The hole 688 mobility as a function of strain is plotted in Fig. 3b, which doesn't show a linear tendency 689 with increasing strain. Devices with -0.8%, -1.2%, and -1.4% strain show enhanced hole 690 mobility compared with that of the strain-free α -FAPbI₃ bulk crystal. A -1.2% strained device gives the highest mobility of \sim 72 cm² V⁻¹ s⁻¹. Further increasing the strain results in a drastic 691 692 drop in the hole mobility, because higher strain levels will relax at a lower thickness and 693 induce high concentrations of dislocations that deteriorate the device performance.

694

695

3. Time-of-flight (ToF) measurements

696 To validate the results from the Hall effect measurement, we study the carrier mobility of the epitaxial α -FAPbI₃ thin films under different strains by ToF measurements. The 697 698 schematic device structure is shown in the inset of Fig. 3d. A layer of Parylene-C was 699 deposited between the Au electrode and the substrate to block the carrier extracted from the 700 substrate as demonstrated above. Besides, we adopted a 685-nm laser as the excitation source 701 so that the photon can only be absorbed by the epitaxial layer rather than the substrate that has a larger bandgap than the excitation laser energy. In this case, we guaranteed the 702 703 measured photovoltages coming from the epitaxial layer absorption were the same. Similarly, the excited electrons that occupy the CBM of the α -FAPbI₃ are less likely to be extracted to 704 705 the CBM of the substrate due to the large energy barrier, as shown in Supplementary Fig. 10.

706 ToF measurements were carried out with the designed structure where the distance 707 between the two electrodes is controlled to be 100 µm in lateral directions. Meanwhile, the 708 thickness of the epitaxial layer is controlled to be the same and all the devices are biased with 1 V. The measured transient photocurrents are shown in Fig. 3c where the carrier transit time 709 710 can be extracted as the inflection point of the photocurrent curve. The carrier mobility can be 711 calculated by:

where μ is the calculated carrier mobility, *d* is the thickness of the target region, *V* is the applied voltage, and *t* is the measured carrier transit time. The measured carrier mobilities are plotted in Fig. 3d. Our measured ToF mobility of the epitaxial α -FAPbI₃ with different strains showed a similar trend compared with the measured Hall mobility. -1.2% strained α -FAPbI₃ exhibits the highest carrier mobility while further increasing the strain can lead to faster relaxation, and the accumulation of dislocations will reduce the carrier mobility.

 $\mu = \frac{d^2}{Vt}$

Besides, bias and laser power dependence of the ToF measurement are also discussed. 718 ToF mobility is calculated by $\mu = \frac{d^2}{vt}$. The applied bias will only change the carrier transient 719 720 time rather than the carrier mobility. This is because the carrier mobility is an intrinsic property of the semiconductor materials and is independent of the magnitude of the applied 721 722 bias. This rule has been demonstrated by many ToF measurements of halide perovskites, in which the carrier mobility is independent of the applied bias but the measured carrier 723 transient time is inversely proportional to the applied bias^{77,78}. In the measurements, as 724 described in the manuscript, all experiments are tested under 1 V DC bias with other 725 726 experimental parameters well-controlled. Therefore, the transient photocurrents of the epitaxial films under different strain magnitudes appropriately reveal the carrier mobility of 727 728 the epitaxial thin films. For the ToF measurement, it has been reported that the photogenerated carrier density shows laser power dependency and a high carrier density can 729 generate the space charge effect which affects carrier extraction^{79,80}. However, the space 730 charge effect will be significant only in systems where the ratio between the electron mobility 731 and the hole mobility excesses two orders of magnitude⁸¹. According to the reported carrier 732

34

mobility of halide perovskites, the electron and hole mobilities are usually on the same order of magnitude when they are from the same literature⁸². Therefore, the space charge effect can be safely ignored and the laser power dependence of ToF measurements is less significant in this study. In the measurements, the laser intensity is kept at constant (10 mW cm⁻²) throughout the entire measurement so that the only variation is the strain magnitude of the epitaxial thin film.

739 The possible influence of the current-voltage (I-V) hysteresis on the ToF measurement is also discussed here. During the ToF measurement, the devices are biased under a constant 740 voltage, e.g., 1 V, to collect photogenerated carriers in the epitaxial thin films. In this case, 741 742 the baseline current due to ion migration and mobile electron and hole carriers under a fixed 743 electric field is considered to be in a steady state. Adding on top of the baseline current, a 744 pulsed laser is used as the excitation source to generate carriers in the epitaxial thin film. The 745 corresponding photocurrent-time characteristics are recorded by an oscilloscope. The timescale of the excited transient current, i.e., ToF, is measured to be $\sim 10^{-6}$ s (as seen in Fig. 746 3 in the main text). I-V hysteresis is reported to originate from ion migration, device 747 capacitive charging, and perovskite ferroelectric polarization^{83,84}. For the ion migration, the 748 timescale is reported to be in the range of seconds to minutes in halide perovskites⁸⁵, which is 749 much longer than that of the ToF. For the device capacitive charging, whose timescale is 750 reported to be in the range of milliseconds to seconds⁸³, which is also much longer than that 751 of the ToF. Also, the timescale of ferroelectric dipole switching is reported to be faster than 752 10⁻⁸ s ⁸⁶, which is much shorter than that of the ToF. Besides, since the devices are biased 753 754 under 1 V DC voltage during the measurement, the capacitive charge and the ferroelectric dipoles are almost kept constant in the devices. Therefore, it is safe to exclude the possible
influence of the *I–V* hysteresis on the ToF measurement.

757

758 4. Analysis of the influence of ion migrations to the carrier mobility measurements

Ion migrations of halide perovskites have been studied in the literature and are believed 759 760 to be the origin of the reported current-voltage hysteresis in halide perovskites. Reported 761 studies showed that the mobility of the vacancies and the ions in polycrystalline perovskites were determined to be $\sim 1.6 \times 10^{-6}$ cm² V⁻¹ s⁻¹ and $\sim 5 \times 10^{-8}$ cm² V⁻¹ s⁻¹, respectively^{87,88}. 762 However, these values are much smaller than that of the measured hole mobilities ($\sim 50 \text{ cm}^2$ 763 $V^{-1} s^{-1}$) in this study. Additionally, the carrier transit time in the ToF measurement of this 764 765 study was in the range of µs, which was too short for the ions to move a substantial distance. 766 Therefore, it is safe to exclude the contribution of ions and structural vacancies from the measured hole mobility in this study. 767

768 Besides, grain boundaries of the polycrystalline halide perovskites were reported to be a major pathway for ion migrations⁸⁹⁻⁹¹. In this study, the epitaxial growth of single-crystalline 769 770 perovskites minimizes the formation of grain boundaries and, therefore, minimizes the influence of the ion migrations. In a reported study, the ion migration mobility in both 771 polycrystalline and single crystalline methylammonium lead iodide (MAPbI₃) were 772 measured⁹². Compared with the ion migration in polycrystalline MAPbI₃ whose ion migration 773 mobility was $\sim 1 \times 10^{-9}$ cm² V⁻¹ s⁻¹, the ion migration in single crystalline MAPbI₃ can hardly be 774 detected⁹². Therefore, we can conclude that the influence of ionic movements in the halide 775 776 perovskites can be excluded from this study.

777

778 **5. Crystalline quality characterization**

The space-charge limit current (SCLC) method is used to quantitatively evaluate the crystalline quality of the epitaxial thin film (Extended Data Fig. 7 and Supplementary Fig. 11). Devices adopt the same structure as the one used in ToF measurement. Devices with different strain levels (strain-free, -0.8%, -1.4%, and -2.4%) are fabricated and tested. Note that bulk α -FAPbI₃ single crystals were used as the substrates to fabricate strain-free devices.

We first study the *I–V* characteristic curves of the devices with forward and reverse scans from 0.01 V to 2 V (Extended Data Fig. 7a to 7d). Note that the devices adopt a planar structure to correlate with the devices used in the Hall effect measurements. A layer of Parylene-C (50 nm) and a layer of Au (50 nm) are sequentially deposited on the substrates while the lateral distance between two Parylene-C/Au electrodes is 100 μ m. Epitaxially strained α -FAPbI₃ thin films are then grown from the gaps between the electrodes and cover part of the electrodes for electrical contact.

791 In the forward scan, the log-log I-V characteristic curves show different regions of 792 behavior. At low voltages, the *I–V* curves exhibit a typical ohmic conduction behavior, where 793 the current is linearly related to the applied voltage ($n \sim 1$, blue line). In this region, the quantity of the thermally generated free carriers exceeds that of the externally injected 794 795 carriers⁹³. With increasing the applied voltage, the externally injected carriers gradually 796 increase and start to fill the traps. Therefore, a trap-filling process is identified by the end of 797 the linear ohmic region (n>3, green). By further increasing the voltage, traps in the bandgap are completely filled by the externally injected carriers and the carriers move freely⁹⁴. In this 798

region, the current is squarely related to the applied voltage ($n\sim2$, orange). V_{TFL} is extracted by finding the voltage where the ohmic region ends. The extracted V_{TFL} in samples with different strains is used to evaluate the trap density, which agrees with the results in the manuscript.

803 The forward scan is followed by a reverse scan where the *I*–*V* characteristic curves of 804 the reverse scan show only a linear region. By fitting the I-V curves of the reverse scan, we 805 find out that the current is squarely related to the applied voltage ($n \sim 2$, red). During the reverse scan, the filled traps will not undergo a de-trapping process because of the existence 806 807 of the applied electric field as well as the continuously injected carriers. Therefore, the 808 reverse scan cannot be used to study the trap-filling process, and the evaluation of the V_{TFL} can only be studied with the forward scan. Trap density of the epitaxial film n_t can be 809 810 calculated by:

$$V_{TFL} = \frac{en_t d^2}{2\epsilon\epsilon_0}$$

811 where *d* is the layer thickness, ε (=47) is the relative dielectric constant of α -FAPbI₃, and 812 ε_0 is the vacuum permittivity.

We also statistically study the trap density in the epitaxial α -FAPbI₃ film with different strain magnitudes to evaluate the robustness of the measured trap density values. Here, five different devices of each strain value are tested. The trap density of the epitaxial α -FAPbI₃ film from different samples are calculated and displayed in Supplementary Fig. 11a. The average trap densities and the standard deviation are shown in Supplementary Fig. 11b. With increasing the strain, the average trap densities show an increasing trend, indicating that a higher strain level induces a higher defect density in the epitaxial α -FAPbI₃ film. This trend correlates well with the data we showed in the manuscript. Meanwhile, the standard deviation of the trap density also increases with the strain, which reveals an increased disorder in the epitaxial α -FAPbI₃ film at higher strain values.

Besides, we also investigate I-V characteristic curves from the same device under 823 different measurement conditions, e.g., different scan rates and scan directions. I-V curves of 824 825 the halide perovskites are reported to be scan rate-dependent due to the fact that the scan rate can alter the charged carrier collection efficiency of the devices, which results in artificial I-V826 curves^{84,85,95}. However, this discrepancy can be effectively minimized by adopting a 827 relatively slow scan rate⁸³ since a fast scan rate has been reported to go beyond the response 828 speed of free carriers to the electric field⁹⁶. To prove that the 50 mV s⁻¹ scan rate we use in 829 830 this work does not produce artificial *I–V* curves, we study *I–V* curves under four representative scan rates (Supplementary Fig. 11c). I-V curves with 10 mV s⁻¹, 50 mV s⁻¹, and 200 mV s⁻¹ 831 scan rates show distinct trap filling behavior as we discussed above. The V_{TFL} extracted from 832 the *I–V* curves with 10 mV s⁻¹ and 50 mV s⁻¹ scan rates are similar, indicating that 10 mV s⁻¹ 833 and 50 mV s⁻¹ are sufficiently slow to avoid artificial I-V curves and V_{TFL} values. Meanwhile, 834 increasing the scan rate to 200 mV s⁻¹ leads to a smaller V_{TFL} because of the limited response 835 of free carriers to the rapid electric field change. No trap filling process can even be measured 836 when further increasing the scan rate to 1000 mV s⁻¹, showing that the I-V curve under a very 837 fast scan rate can skew the results. Therefore, we can conclude that the 50 mV s⁻¹ scan rate 838 we use in the SCLC measurements helps produce reliable I-V curves and V_{TFL} . Besides, we 839 840 study how the scan direction may possibly affect the SCLC measurement. Supplementary Fig. 841 11d shows I-V curves of the same device with different scan directions. The I-V curves from

positive and negative scan directions, with ~10 min in between the scans, are similar to each other, which is because the device adopts a symmetric Au/perovskite/Au structure. The initial direction of the forward scan along either direction should give the same result. Therefore, we can conclude that the SCLC measurements under different scan conditions, with a slow scan rate (50 mV s⁻¹), and a symmetric device structure can produce reliable results.

847 In this study, the goal is not to distinguish the origins or the densities of various traps 848 but is to study the trap density increment in the epitaxial α -FAPbI₃ thin films when the strain 849 magnitude is increased. For lattice-mismatched heteroepitaxial growth, the density of misfit dislocations will be increased with increasing the interfacial misfit magnitude and the 850 epitaxial layer thickness, to partially release the strain⁹⁷. These misfit dislocations tend to 851 852 degrade the properties of the epitaxial layers and, therefore, the performance of the devices 853 by introducing below-gap trap states. For the impurity, the growth precursor was controlled 854 to be the same, which will keep a similar impurity source for all α -FAPbI₃ films in this study. 855 Without additional impurity source being introduced during epitaxial growth, the epitaxial film with different strain levels should share a similar impurity density. Therefore, we 856 857 exclude the contribution of impurities to the measured trap density increment. For the other crystallographic defects (e.g., vacancies, interstitials, antisites, etc.), their contributions to the 858 859 trap density increment are considered to be minor, because it is a convention that the generation of dislocations is the main reason for strain relaxation in heteroepitax $y^{97,98}$. For the 860 interfacial defects formed at the perovskite/electrode interface, all devices fabrication adopted 861 the same protocol. Therefore, the interfacial traps caused by the interfacial defects are similar 862 for different strain values and can be excluded from the possible reason for the trap density 863

increment in the epitaxial samples. In this case, the impurities and the interfacial defects will not lead to the significant trap density increment, up to $\sim 1000\%$ as observed in the studies with increasing the strain magnitude from 0% to -2.4%.

Based on the above discussions, we demonstrate that the trap density increments with 867 increasing the interfacial misfit magnitude and film thickness can be attributed to the 868 869 strain-induced dislocations. Even though there is currently a lack of an experimental characterization technique that would allow accurately quantifying the separate contribution 870 of each defect due to the complexity of these defects⁹⁹, contributions from all other types of 871 traps are minor and can be safely excluded in this study by adopting the unique variable 872 873 principle throughout the experiment. Actually, the unique variable principal is commonly 874 used to exclude irrelevant factors in trap density measurements, as evidenced by many 875 examples in the literature. Vapor deposition of relatively thick perovskite film is reported to show reduced trap density due to the reduced crystallographic defects. The trap density 876 increment in the relatively thinner sample excludes the contribution of impurities and the 877 interfacial defects because they are considered to be similar to those of the thicker sample and 878 will not lead to trap density reduction¹⁰⁰. Also, it is recently reported that the addition of 879 880 CuBr into inorganic perovskite will reduce the trap density. The influence of the interfacial defects and the impurities are considered of minor influence to the trap density reduction in 881 the control sample due to the same fabrication protocol¹⁰¹. Similarly, the addition of 882 $Eu^{3+}-Eu^{2+}$ ionic pair can reduce the crystallographic defects generated by the Pb⁰ and I⁰. The 883 884 trap density increment in the control sample rules out the contribution of interfacial defects and impurities because the samples share similar fabrication processes¹⁰². Additionally, 885

886 perovskite seeding growth is reported to improve the crystallinity and reduce the trap density. 887 The interfacial defects and the impurities in the control sample are considered to be similar in the seeded grown sample and control sample¹⁰³. What's more, modifying the interface 888 889 between the perovskite and the electron transporting layer is shown to reduce interfacial defects and trap density. The influence of the impurities and crystallographic defects can be 890 excluded because they are considered to be similar in different devices¹⁰⁴. Finally, 891 incorporating bilateral alkylamine additives is shown to reduce interfacial defects and trap 892 893 density in the perovskite film. Contributions from impurities and crystallographic defects are ruled out due to the fact these two factors are similar in different devices¹⁰⁵. 894

895 We also investigate the literature to study the minimum trap density difference that can 896 be measured by the SCLC method. Researchers demonstrated the reduced trap density by 15% due to the incorporation of Cl in the perovskite film¹⁰⁰. In two-dimensional perovskite 897 898 nanowires with different layer numbers, a one-fold increment of trap density was also reported¹⁰⁶. Meanwhile, researchers demonstrated the decrease of trap density by $\sim 20\%$ with 899 a modified tin doped indium oxide (ITO) surface¹⁰⁷. Similarly, a decrease of trap density by 900 \sim 50% with a modified interface was also reported¹⁰⁸. Compared with the reported works, the 901 results in this study demonstrate a difference from ~30% to up to ~1000%, which is 902 903 sufficiently large to conclude that a higher strain can induce more defects.

904 Characterizing the trap density in halide perovskite thin films has been widely studied. 905 Quantitative characterization of the trap density in halide perovskites are mostly done by the 906 SCLC method (the dark *I–V* characteristic curve). It is believed to be the most facile, accurate, 907 and direct technique for trap density characterization and has been extensively used^{77,78,109}. 908 Besides the SCLC method, tuning the excitation density of input photons in the transient 909 photocurrent measurement is also reported to roughly estimate the trap density by generating different densities of free carriers and monitoring the decay rate^{110,111}. The measurement 910 911 accuracy is relatively low. Additionally, capacitance-frequency (C- ω) spectroscopy has been reported to study the trap density in organic materials^{112,113} and halide perovskites¹¹⁴⁻¹¹⁷. The 912 913 low-frequency capacitance originates from the carrier trapping/detrapping of electronic traps 914 while the high-frequency capacitance is attributed to the geometrical capacitance and the depletion capacitance^{114,116}. 915

916 In this study, we use the C- ω spectroscopy as an alternative probe for trap density of 917 epitaxial α -FAPbI₃ thin films with different strain magnitudes. Devices for C- ω 918 measurements have a lateral configuration with a 3 mm width. Au and ITO are used as the two electrodes with a $2 \times 2 \text{ mm}^2$ area. During the measurement, a 0.5 V AC voltage is applied. 919 The resulting electric field is 1.67×10^{-4} V μ m⁻¹, which is insufficient for generating ion 920 migration¹¹⁷. In this case, we exclude the contribution of charged ions to the measured 921 capacitance. The capacitance of α -FAPbI₃ thin films with different strain magnitudes are 922 measured in the frequency range of $1 \sim 10^5$ Hz in dark. To eliminate the influence of the 923 parasitic capacitance from the substrate and air, we first measure the C- ω spectra of the bare 924 925 substrate without the epitaxial layer. After measuring the C- ω spectra of the devices with the 926 epitaxial layer, we subtract the spectra of the substrates from that of the devices to obtain the 927 C- ω spectra of the epitaxial layer, which therefore exclude the capacitance contributions from 928 the substrates and air. The results after subtraction are shown in Supplementary Fig. 12a. The 929 measured capacitance gradually increases with increasing the strain magnitudes, indicating 930 the accumulation of electronic traps. We then calculate the trap density with the C- ω 931 measurement results. The trap density can be calculated by

$$N_t(E_{\omega}) = -\frac{V_b}{qkAtT} \frac{d C(\omega)}{d \ln (\omega)}$$

where N_t is the trap density at a certain trap energy E_{ω} , V_b is the build-in potential and is estimated to be ~0.5 V from the work function difference between Au and ITO, q is the element charge, k is the Boltzmann constant, A is the device area, t is the thickness, and T is the temperature. Trap energy E_{ω} is calculated by

$$E_{\omega} = kT \ln\left(\frac{\omega_0}{\omega}\right)$$

936 where ω_0 is the attempt-to-escape frequency, which is reported to be $\sim 2 \times 10^{11}$ s⁻¹ for halide 937 perovskites¹¹⁸. The calculated trap density of the epitaxial α -FAPbI₃ thin films with different 938 strain magnitudes are shown in Supplementary Fig. 12b and an obvious trap density 939 increment can be seen with increasing strain magnitudes.

940 To quantitatively evaluate the trap density in the epitaxial thin films, we fit the calculated941 trap density distribution with the following Gaussian distribution equation:

$$N_t(E_{\omega}) = \frac{n_t}{\sigma\sqrt{2\pi}} exp\left[-\frac{(E_0 - E_{\omega})^2}{2\sigma^2}\right]$$

where n_t is the trap density, σ is the disorder parameter, and E_0 is the mean energy of the traps. The fitted trap density (n_t) for 0%, -0.8%, -1.4%, and -2.4% strained epitaxial thin films are 2.6×10^{11} cm⁻³, 3.2×10^{11} cm⁻³, 7.2×10^{11} cm⁻³, and 2.4×10^{12} cm⁻³, respectively. The trap density increment with increasing the strain magnitude indicates an accumulation of dislocations under a higher strain magnitude⁹⁷. The trend also agrees with that measured by the SCLC method (Extended Data Fig. 7 and Supplementary Fig. 11). Note that the *C*- ω method measures the sum of electron and hole traps¹¹² while the SCLC methods can

949	distinguish electron and hole traps with selected electrodes ⁷⁸ . In the SCLC measurements, we
950	adopt an Au/perovskite/Au structure that only reveals the hole traps due to the energy
951	alignment of the Au electrode for hole injection ⁷⁸ . This may be the main reason that leads to
952	the small discrepancy in the results measured by the C - ω and the SCLC methods.

- 953
- 954

955 Supplementary Discussion 14: Different Methods for Stabilizing α-FAPbI₃

956 1. Current methods

957 The high-temperature α -FAPbI₃ phase suffers from a spontaneous and quick phase transition to the low-temperature, photoinactive δ -FAPbI₃ phase at room temperature. The 958 959 most popular stabilization method for α -FAPbI₃ is accomplished by mixing/doping small ions¹¹⁹⁻¹²¹. Several reported works discussed the possible stabilization mechanisms behind. 960 961 Researchers explained the stabilization effect of mixing small ions by studying the entropy where the formation energy of the mixed δ phase was too large for the phase transition to 962 take place¹¹⁹. Meanwhile, the internal strain of α -FAPbI₃ lattice was reported as the driving 963 964 force of the phase transition and compensation of the strain by incorporating small ions could prevent the phase transition¹⁰. Despite the success and reliability of this method, it should be 965 pointed out that the incorporation of the small ions usually leads to an enlarged bandgap¹¹⁹. 966 As a result, light absorption at the long-wavelength region will be inhibited and the 967 short-circuit current of the fabricated solar cells will decrease¹²². Recently, researchers 968 reported several mixing strategies that stabilized the phase without the bandgap 969 increment^{122,123}. However, such incorporation showed short-term stability of no more than 970

971 several weeks. Meanwhile, the incorporation of external ions that were not well-miscible with 972 the α -FAPbI₃ matrix would eventually lead to disorders and heterogeneity in the lattice, and 973 these heterogeneities would serve as non-radiative recombination centers that deteriorated the 974 device performance⁵¹.

975 Other stabilization methods of α -FAPbI₃ were also reported. Surface functionalization 976 and dimension reduction are popular due to the recent emergence of low-dimensional halide 977 perovskites. The reduction of surface energy was accomplished by large-sized/nonconductive organic molecules¹²⁴. However, such functionalization with organic molecules would prohibit 978 the transport of charged carriers and, therefore, led to relatively low performance. Recently, a 979 980 new confinement strategy of α -FAPbI₃ stabilization was reported. α -FAPbI₃ was found to obtain phase stability within patterned nanochannels¹²⁵. Long-term stability was achieved by 981 limiting the expansion of α -FAPbI₃ during phase transition to δ -FAPbI₃ with the confinement 982 of the surrounding nanochannels. However, this method lacked compatibility with 983 conventional fabrication protocols and could hardly be applied to device integration. 984 Additionally, encapsulating the α -FAPbI₃ with mesoporous TiO₂ scaffolds was found to 985 enhance the phase stability of α -FAPbI₃¹²⁶. However, the stability didn't last long. 986

987

988 **2.** Differences between the epitaxial stabilization and the current methods.

989 Besides the conventional stabilization by forming mixed perovskite alloys, the 990 dimensional reduction, as well as the encapsulation effects, are also reported^{124,125,127,128}. 991 Herein, we discuss the differences between these methods with the epitaxial stabilization in 992 this study and demonstrate that the epitaxial stabilization is from neither the dimensional 993 reduction nor the encapsulation effect.

The dimensional reduction of the α -FAPbI₃ is usually accomplished by forming two-dimensional α -FAPbI₃ with several atomic layers or zero-dimensional quantum dot with a limited number of lattices¹²⁴. This low-dimensional α -FAPbI₃ is usually capped with surfactants/capping agents to reduce the surface energy so that the metastable α phase can be stabilized. In the case of the epitaxially stabilized α -FAPbI₃, however, the thin film is far beyond several atomic layers and, therefore, will not be considered as the effect of the dimensional reduction.

1001 The encapsulation effect is also reported to stabilize the α -FAPbI₃. Embedding the 1002 α -FAPbI₃ into the mesoporous TiO₂ scaffolds was reported to retard the phase transition due to the partial encapsulation by the mesoporous TiO_2 ¹²⁶. Meanwhile, the stabilization of 1003 α -FAPbI₃ within nanochannel was also reported^{125,128}. The encapsulation of the α -FAPbI₃ 1004 1005 with the nanochannels prohibits the phase transition by constraining the volume expansion of α -FAPbI₃ to δ -FAPbI₃ in the nanochannels. However, in both cases, an epitaxial relationship 1006 1007 between the mesoporous TiO₂/nanochannel and the constrained α -FAPbI₃ is not necessary. In 1008 the case of the epitaxial stabilization, the α -FAPbI₃ is grown on the substrate with only the 1009 bottom surface chemically bonded to the substrate. The α -FAPbI₃ lattice is constrained to the 1010 substrate, which is the essential difference from the encapsulation method.

1011 By comparing these two methods with the epitaxial growth, we can conclude that both 1012 the dimensional reduction and the encapsulation effect require the entire 1013 capping/encapsulation of the α -FAPbI₃ by either the capping agents or space-confinement

47

1014 objects. In the epitaxial stabilization, the epitaxial α -FAPbI₃ grows on the substrate and 1015 leaves the top surface and the side surfaces uncapped. The stabilization effect comes from the 1016 coherent growth of the α -FAPbI₃ with the substrates. During nucleation, the crystalized 1017 FAPbI₃ will adopt the most conformal atom sequence to accommodate the existing substrate 1018 crystal structure. Once crystallized, the formed epitaxial lattice will be constrained to the 1019 substrate due to the strong chemical bonds between them. Therefore, the epitaxial growth is also used to stabilize the polymorphs that are unstable under ambient condition¹²⁹⁻¹³¹. The 1020 1021 origin of the epitaxial stabilization actually comes from the coherent interface rather than the 1022 reduced dimension or the encapsulation effect. The epitaxial α -FAPbI₃ thin film strongly 1023 bonds to the substrate, leaving other surfaces uncapped. Not to mention the passivation effect 1024 of the surfactant. Therefore, we can exclude the possibility of dimensional reduction and 1025 encapsulation effects regarding the phase stabilization of α -FAPbI₃.

1026 Besides, a recent study shows that the residual strain produced from the thermal 1027 expansion coefficients difference during the thermal annealing can be used to temporarily stabilize the polycrystalline α -CsPbI₃ film¹⁶. However, the mechanism is different from the 1028 1029 internal lattice strain neutralization. The isotropic (to the randomly orientated polycrystalline perovskite lattices) residual strain originates from the thermal expansion coefficients 1030 1031 difference between the glass slide and the polycrystalline perovskites. During cooling down, the constraint from the glass will prevent the phase transition of the α -CsPbI₃ film. The weak 1032 1033 constraint by van der Waals contact between the glass slides and the perovskite will be 1034 unstable against the environmental fluctuations and can gradually lose the stabilization effect. 1035 In the case of chemically epitaxially strained α -FAPbI₃, we suggest that strong constraint from the ionic bond at the epitaxial interface restrict the phase transition, and neutralization of the lattice internal tensile strain can also be an important reason for stabilization. The strain we applied by epitaxial growth is an anisotropic lattice strain (to the aligned single crystal lattices), which is different from the isotropic residual strain from the reported work¹⁶.

1040

1041

1042 Supplementary Discussion 15: Composition of the Strained α-FAPbI₃

1043 To study the composition of the stabilized epitaxial α -FAPbI₃ thin film, X-ray 1044 photoelectron spectroscopy (XPS) is used to examine the targeted key elements (I, Pb, Br, 1045 and Cl), as shown in Extended Data Fig. 8a to 8d. The results indicate a pristine surface of 1046 the epitaxy α -FAPbI₃ thin film without any contamination from the Br and Cl elements, 1047 which excludes the possibility of any stabilization effects by Br and Cl incorporation⁴⁸.

1048

1049

1050 Supplementary Discussion 16: First-Principles Calculations of Epitaxial Stabilization

1051 First-principles calculations were performed to investigate epitaxial stabilization of 1052 α -FAPbI₃ with respect to δ -FAPbI₃ on MAPbBr₃ substrates. A typical model of epitaxial 1053 stabilization calculations compares the total energy changes of nucleating the two phases on 1054 the substrate¹³². Equation (1) shows an expression of this model for this specific system:

1055
$$\Delta E^{\alpha-\delta} = \left(\Delta E_f^{\alpha} - \Delta E_f^{\delta}\right)d + \left(\Delta E_s^{\alpha} - \Delta E_s^{\delta}\right)d + \left(\sigma^{\alpha||s} - \sigma^{\delta||s}\right) (1)$$

1056 where the terms on the right-hand side for phase i ($i = \alpha, \delta$) are bulk formation energy (ΔE_f^i), 1057 strain energy (ΔE_s^i), and interfacial energy ($\sigma^{i||s}$, S means substrate) terms. Here, we use 1058 area-specific bulk energy terms (ΔE_f^i and ΔE_s^i) by setting the film thickness to d = 1 nm. The 1059 sum of the three energy-difference terms is the total energy difference between strained 1060 α -FAPbI₃ and δ -FAPbI₃ ($\Delta E^{\alpha-\delta}$). A negative $\Delta E^{\alpha-\delta}$ indicates that growth of α -FAPbI₃ is 1061 energetically more favorable than δ -FAPbI₃ on the MAPbBr₃ substrate, and thus the 1062 metastable α -FAPbI₃ is epitaxially stabilized. Calculation details and results for each energy 1063 term are discussed below.

1064 The bulk formation energy (ΔE_f^i) is the energy difference between bulk *i*-FAPbI₃ and its 1065 elemental components, as shown in Equation (2):

1066
$$\Delta E_f^i = E_i - E_{FA} - E_{Pb} - 3E_I$$
(2)

1067 Because we are dealing with polymorphs with the same composition, the elemental components for both α and δ phases are the same. The total energy of the FA⁺ cation is 1068 calculated based on an isolated molecule. Total energies of Pb and I are calculated using their 1069 1070 most stable crystal structures, with a space group of Fm3m and Cmce, respectively. By setting the film thickness to 1 nm, we get area-specific bulk formation energies ΔE_f^{α} = 1071 $-2.279 \times 10^{-1} \frac{eV}{\lambda^2}$ and $\Delta E_f^{\delta} = -2.31 \times 10^{-1} \frac{eV}{\lambda^2}$. The results indicate that δ -FAPbI₃ is more 1072 1073 stable, which agrees with the experimental findings that δ -FAPbI₃ is more stable than α -FAPbI₃ at room temperature⁴⁰. 1074

1075 The strain energy of *i*-FAPbI₃ (ΔE_s^i) is induced by constraints from the substrate due to 1076 epitaxial nucleation and lattice mismatch. It equals to the energy difference between the films 1077 with and without the strain (Equation (3)).

1078
$$\Delta E_s^i = E_i^{strained} - E_i \tag{3}$$

and α -FAPbI₃ film are (001) oriented. Our calculations also show that lattice constants of α -FAPbI₃ and MAPbBr₃ have a relatively large mismatch of 6%. Therefore, we can explicitly obtain $E_{\alpha}^{strained}$ in Equation (3) by calculating α -FAPbI₃ with 6% bi-axial compressive strain along *ab*-axes. The area-specific ΔE_s^{α} is calculated to be $1.2 \times 10^{-2} \frac{eV}{\dot{A}^2}$.

1084 In the case of δ -FAPbI₃, the possible growth model is not straightforward. Therefore, we 1085 perform a search for the lattice plane of minimal lattice mismatch with MAPbBr₃ (001). The hexagonal (001) close-packed plane of δ -FAPbI₃ has dimensions of a = b = 8.62 Å and $\gamma =$ 1086 120°. Based on this plane, the termination we found that is most compatible with MAPbBr₃ 1087 1088 (001) substrate has a large vector strain of 13.2% and 3.43°, and an area strain of 18.3%. This 1089 obviously exceeds the strain threshold for a coherent interface, which is usually below 10% ¹³². We thus consider δ -FAPbI₃ forms incoherent interface with MAPbBr₃ (001). A film with 1090 the incoherent interface is not constrained by the substrate and the strain energy ΔE_s^{δ} is 1091 therefore 0. 1092

1093 To calculate the interfacial energy for α -FAPbI₃ (001)/MAPbBr₃ (001) ($\sigma^{\alpha||s}$), we build 1094 heterostructural models consisting of *m* layers of substrate and *n* layers of film. The two 1095 heterostructural models are shown in Supplementary Fig. 13a. They represent two different 1096 terminations, namely FAI/PbBr₂ (m = 5, n = 9) and PbI₂/MABr (m = 5, n = 11). Note that 1097 only nine layers of film material are shown in each structure for clarity.

1098 The other two possible terminations for the α -FAPbI₃ (001)/MAPbBr₃ (001) interfaces 1099 are FAI/MABr and PbI₂/PbBr₂ (not shown here). Through initial analysis of bonding 1100 characteristics, we find that these terminations cannot form ionic bonds between the film and 1101 the substrate like the Pb-I or Pb-Br bonds in FAI/MABr (PbI₂/PbBr₂). 'Physical contacts' like FAI/MABr and PbI₂/PbBr₂ ¹³³ at the interface are less stable than 'chemical contacts' like
FAI/PbBr₂ and PbI₂/MABr. Therefore, we only focus on FAI/PbBr₂ and PbI₂/MABr in this
investigation.

After the heterostructural models are confirmed, the interfacial energy can be calculated by subtracting the bulk energy of all components in the heterostructural model. Specifically, interfacial energy equations for these two heterostructural models are shown as Equations (4) and (5).

1109
$$\sigma_{TERM1}^{\alpha||S} = \frac{1}{2A} (E_{HS1} - 2 \times E_{MAPbBr_3} - 4 \times E_{FAPbI_3}^{strain} - \mu_{Pb}^{MAPbBr_3} - 2 \times \mu_{Br}^{MAPbBr_3} - \mu_{FA}^{FAPbI_3} - \mu_{FA}^{FA$$

1110
$$\mu_I^{FAPbI_3}$$
 (4)

1111
$$\sigma_{TERM2}^{\alpha||S} = \frac{1}{2A} (E_{HS2} - 2 \times E_{MAPbBr_3} - 5 \times E_{FAPbI_3}^{strain} - \mu_{MA}^{MAPbBr_3} - \mu_{Br}^{MAPbBr_3} - \mu_{Pb}^{FAPbI_3} - \frac{1112}{2 \times \mu_{FAPbI_3}^{FAPbI_3}}$$
(5)

1113 where E_{HS} is the total energy of the heterostructural model, E_{MAPbBr_3} is the total energy of 1114 the strain-free MAPbBr₃ lattice, $E_{FAPbI_3}^{strain}$ is the total energy of the strained α -FAPbI₃ lattice, 1115 and μ represents the chemical potentials of the corresponding atoms/molecules. Each of the 1116 heterostructural models contains two identical interfaces, and A is the interfacial area.

1117 On the right-hand side, the trailing terms represent the bulk energy of each component in 1118 the heterostructure. For example, there are nine layers of α -FAPbI₃ in FAI/PbBr₂, which 1119 equals to four intact α -FAPbI₃ unit cells (each has two layers) plus one extra layer of FAI. 1120 The extra or un-stoichiometric components require the determination of their chemical 1121 potentials in the corresponding film or substrate material. Here we show in detail how we 1122 obtained chemical potentials of un-stoichiometric α -FAPbI₃ components.

1123
$$\Delta\mu_{FA} + \Delta\mu_{Pb} + 3\Delta\mu_I = \Delta H(FAPbI_3) = -5.78 \ eV \tag{6}$$

1124
$$\Delta \mu_{Pb} + 2\Delta \mu_I < \Delta H(PbI_2) = -2.02 \ eV \tag{7}$$

1125
$$\Delta \mu_{FA} + \Delta \mu_I < \Delta H(FAI) = -3.74 \ eV \tag{8}$$

1126 According to thermodynamic stability limits expressed in Equations (6) - (8), we plot the 1127 phase diagram for α -FAPbI₃ against the chemical potential change $\Delta \mu_{I}$ and $\Delta \mu_{Pb}$. 1128 Supplementary Fig. 13b shows the phase diagram, and the long, narrow green region 1129 indicates the thermodynamic stability region for the synthesis of α -FAPbI₃. We select three 1130 representative points throughout the whole region for the following calculations: A 1131 ($\Delta \mu_{I} = -1.02 \ eV$, $\Delta \mu_{Pb} = 0 \ eV$), B ($\Delta \mu_{I} = -0.50 \ eV$, $\Delta \mu_{Pb} = -1.03 \ eV$), and C 1132 ($\Delta \mu_{I} = 0 \ eV$, $\Delta \mu_{Pb} = -2.04 \ eV$).

Similarly, we obtain the phase diagram for MAPbBr₃ substrate (not shown) and select one representative point P ($\Delta \mu_{Br} = -0.70 \ eV$, $\Delta \mu_{Pb} = -1.47 \ eV$) in the middle of the thermodynamically stable range. The values of point P are used as constants in Equations (4) and (5) for the un-stoichiometric MAPbBr₃ components.

We also added the stability limit for FAI/MABr and PbI₂/PbBr₂ in the phase diagram 1137 1138 (Supplementary Fig. 13b). As the red dashed line shows, FAI/MABr is more stable in the 1139 region below this limit, and it covers the whole stability range of α -FAPbI₃. Therefore, we only need to calculate the interfacial energy for FAI/MABr, and the results are 2.86×10^{-4} eV 1140 Å⁻², 4.29×10⁻⁴ eV Å⁻², and 2.86×10⁻⁴ eV Å⁻² at A, B, and C points, respectively. Interestingly, 1141 1142 the composition of interfacial terminations and their preferred chemical potential conditions 1143 agree with each other. For the δ -FAPbI₃/MAPbBr₃ (001) interface, the interfacial energy $\sigma^{\delta||S}$ is given as 6.242×10⁻² eV Å⁻² (i.e., 1 J m⁻²), a typical value for incoherent interfaces¹³². 1144 1145 Results for all energy terms in Equation (1) are summarized in Supplementary Table 3.
1146 The calculated total energy change of nucleating α -FAPbI₃ is around -2.155×10⁻¹ eV Å⁻² 1147 (regardless of chemical potential conditions), while the value for δ -FAPbI₃ is -1.6858×10⁻¹ 1148 eV Å⁻². Apparently, $\Delta E^{\alpha-\delta}$ has a negative value of around -4.7×10⁻² eV Å⁻² (i.e., -0.75 J 1149 m⁻²), which indicates epitaxial stabilization of α -FAPbI₃ with respect to δ -FAPbI₃ on 1150 MAPbBr₃ substrates. This result is comparable to prior successful prediction of epitaxial 1151 stabilization.

From Supplementary Table 3, we can see that the bulk formation energy is the largest 1152 term but yields a small difference $(3.1 \times 10^{-3} \text{ eV } \text{Å}^{-2})$ between α -FAPbI₃ and δ -FAPbI₃. The 1153 strain energy term is in favor of δ -FAPbI₃ by a large value of 1.2×10^{-2} eV Å⁻². The main 1154 contribution to $\Delta E^{\alpha-\delta}$ is from interfacial energy, which is above 6×10^{-2} eV Å⁻² and decides 1155 1156 the overall energy preference. Notably, to accurately determine energetics using DFT 1157 calculations, we apply a large interfacial mismatch (strain = -6%) to calculate the strain 1158 energy term for α -FAPbI₃. However, the calculations represent an upper imit of strain's influence and guarantee a negative $\Delta E^{\alpha-\delta}$ in lower-strain circumstances. Strains below 6% 1159 would definitely yield a ΔE_s^{α} less than 1.2×10^{-2} eV Å⁻² and a more negative $\Delta E^{\alpha-\delta}$, which 1160 1161 better ensures epitaxial stabilization of α -FAPbI₃. Another experimental variable is the substrate composition. We use MAPbBr₃ as the substrate in the heterostructural model to 1162 1163 calculate the interfacial energies, but in experiments we also use mixed-halide substrates with 1164 Cl composition up to MAPbCl_{1.50}Br_{1.50}. This will not change the conclusion of the 1165 discussions here because the substrate energy is excluded in the calculation of the interfacial 1166 energy, as shown in Equations (4) and (5).

1167 Besides, the consideration of the stabilization mechanism is based on the system with

1168 both the α -FAPbI₃ and substrate lattices rather than just focusing on the α -FAPbI₃ lattice 1169 alone. Two different heterostructures (i.e., the α -FAPbI₃/substrate and the δ -FAPbI₃/substrate) 1170 are used to study the interfacial energy of nucleus crystallization during the epitaxial growth. 1171 The structure with lower interfacial energy will be more favorable during nucleus crystallization and, thus, more favorable to form. Calculation results show that the interfacial 1172 energy of the α -FAPbI₃/substrate (0.0286×10⁻² eV Å⁻²) is much lower than that of the 1173 δ -FAPbI₃/substrate (6.242×10⁻² eV Å⁻²). Therefore, the total energy of the 1174 1175 α -FAPbI₃/substrate system is much smaller than that of the δ -FAPbI₃/substrate system 1176 because of the interfacial energy benefit, which stabilizes the epitaxial α -FAPbI₃ on the 1177 substrate. Additionally, the phase transition depends on not only the energy landscapes of 1178 both phases (phases before/after phase transition), but also the energy barrier between the two 1179 phases. This is where the epitaxial constraint from the substrate comes into play. In order to 1180 make the phase transition to happen, the α -FAPbI₃ need to break the ionic bonds with the 1181 substrate, which represents a very high energy barrier. Therefore, due to the synergistic 1182 effects of strain and epitaxial constraint, the α -FAPbI₃ is stable for long term as observed in 1183 this study. In summary, our calculations show reliable and robust validation of the epitaxial stabilization of α -FAPbI₃. 1184

1185

1186

1187 Supplementary Discussion 17: Stability Investigation of the α-FAPbI₃ Removed from
1188 the Substrate

1189 Due to the constraint of the substrate lattice, the epitaxial α -FAPbI₃ thin film shows 1190 long-term stability without phase transition. To experimentally demonstrate the phase 1191 stability originates from the substrate lattice constriction, we partially remove the epitaxial 1192 α -FAPbI₃ thin film from the substrate and investigate the phase stability of the removed 1193 α -FAPbI₃. Due to the limited thickness of the epitaxial α -FAPbI₃ thin film, it is difficult to remove the epitaxial thin film by a sharp razor blade or needle. Therefore, we remove the 1194 1195 epitaxial α -FAPbI₃ by polishing a substrate covered with the epitaxial α -FAPbI₃ thin film 1196 with a sandpaper. As shown in Supplementary Fig. 14a, removed α -FAPbI₃ attached to the 1197 upper half of the sandpaper while the removed substrate (MAPbBr₃ in this case) attached to 1198 the lower half of the sandpaper due to over-polishing. Meanwhile, the right half of the 1199 substrate, which remains unpolished, is covered with epitaxial α -FAPbI₃ while the left half 1200 exposes the substrate due to the removal of epitaxial α -FAPbI₃. The removed α -FAPbI₃, 1201 which attaches to the sandpaper, remains in black α phase right after removal. After 24 hours, the removed α -FAPbI₃ changes to yellow δ phase while the epitaxial α -FAPbI₃ on the right 1202 1203 half of the substrate remains black and stable (Supplementary Fig. 14b). This experiment 1204 shows that the epitaxial stabilization of the α -FAPbI₃ thin film originates from the constraint 1205 by the substrate lattice and relies on the existence of the substrate. The MAPbCl_xBr_{3-x} 1206 substrates are highly stable and therefore the epitaxial α -FAPbI₃ is expected to be highly 1207 stable as well.

1208

1209

1210 Supplementary Discussion 18: Photodetectors Based on the Strained α-FAPbI₃

1211 Based on the device structure and working principles, the halide perovskites 1212 photodetectors are divided into two main categories: the photodiode-type and the 1213 photoconductor-type. Here, we fabricate photodetectors with both structures and discuss them 1214 below.

1215

1216 **1. Photodetector with a photoconductor structure**

1217 Photodetectors with a vertical photoconductor structure based on the strained α -FAPbI₃ thin films are fabricated with a structure shown in Supplementary Fig. 15. Compared with the 1218 photodiode-type one, the photoconductor-type photodetectors will have a much higher 1219 responsivity and the EQE will be larger than 100% due to the injected carriers¹³⁴⁻¹³⁶. All 1220 1221 devices we tested have a thickness of around 1 µm. A transparent ITO electrode is deposited as the top electrode with an area of $1 \times 1 \text{ mm}^2$. *I–V* characteristics are measured under -1 V 1222 bias with a 685-nm laser as the excitation source. The responsivity of the photodetectors is 1223 1224 calculated by:

1225

5
$$R = (J_{light} - J_{dark})/P,$$

where J_{light} and J_{dark} are the current densities under illumination and dark conditions, respectively, and *P* is the input light power density. Extended Data Fig. 9a shows the responsivity of photodetectors at different strain levels under 0.015 W cm⁻² illumination. Compared with the strain-free device, devices at -0.8%, -1.2%, and -1.4% strain levels show enhanced responsivity. Further increasing the compressive strain level will lead to a deterioration of the responsivity due to the accumulation of defects. Supplementary Table 4 summarizes the highest responsivity measured on α -FAPbI₃ in the literature. The responsivity of the device is comparable with the highest responsivity of a strain-free systemwith a similar device structure but at a much weaker illumination and higher bias voltage.

Besides, the detectivity, which characterizes how weak light can be detected, and the gain, which describes the number of charges flowing through an external circuit per incident photon, are calculated by:

1238

$$D = \frac{R}{\sqrt{2qJ_d}}$$
 and $G = \frac{1240R}{685}$

where *D* is the detectivity, *R* is the responsivity, *q* is element charge, J_d is the dark current density, and *G* is the gain. They are also plotted as a function of illumination power level for both -1.2% strained and strain-free devices (Extended Data Fig. 9b, c). Results demonstrate that the strained device has better performance than the strain-free device.

Normalized external quantum efficiency (EQE) spectra are shown in Extended Data Fig.
9d to highlight the extended absorption range of the strained device compared with the
strain-free device.

1246

1247 **2.** Photodetectors with a photodiode structure

1248 With electrons/holes blocking layers, the photodiode-type photodetectors exhibit a minimized dark current by blocking the external current injection. In this study, we aim at 1249 1250 fabricating a detector with high responsivity. Therefore, we fabricate and test the 1251 photodetector with the photodiode structure for comparison. We fabricated a photodiode-type 1252 photodetector by inserting poly(3,4-ethylenedioxythiophene) polystyrene sulfonate 1253 (PEDOT:PSS) as the hole transporting layer and tin oxide (SnO₂) as the electron transporting 1254 The of photodiode photodetector layer. structure the type is

1255 Au/PEDOT:PSS/FAPbI₃/SnO₂/ITO, which is shown in Supplementary Fig. 16a. From the 1256 band diagram, the carrier injection under reverse bias is blocked due to the large energy 1257 barrier. The characterization of the photodetector was carried out with a 685-nm red laser, 1258 which is selected based on the highest EOE wavelength, under different input power levels. Supplementary Fig. 16b shows the *I*-*V* curves of the photodetector under the dark condition 1259 1260 as well as under 1 μ W illumination. The *I*–*V* curves show a typical diode-like behavior while the dark current under -0.5 V is measured to be $\sim 2x10^{-8}$ A. This value is more than two orders 1261 1262 of magnitude lower than that of the photoconductor type detector. However, under the same illumination power level, the photocurrent is much smaller than that of the photoconductor 1263 type detector (~600 times lower at a 10^{-6} W incident power), and therefore, leads to a lower 1264 responsivity (~500 times lower at a 10⁻⁶ W incident power). The responsivity and the 1265 1266 photocurrent under different illumination power levels are also shown in Supplementary Fig. 16c. Under different illumination power levels, the responsivity of the photodetector is 1267 always lower than 1 A W⁻¹ (in comparison with the responsivity of 200 A W⁻¹ of the 1268 1269 photoconductor type detector), indicating the block of external current injection with the 1270 presence of the different transporting layers.

1271

1272

1273 Supplementary Discussion 19: Broader Impact of the Epitaxial System

1274 The technique we developed enables the controllable strain engineering of halide 1275 perovskites with epitaxial growth, which has a fundamental difference from the previous 1276 works. The free-standing α -FAPbI₃ suffers from severe phase transition under room 1277 temperature while the epitaxial strain can stabilize the α -FAPbI₃ without changing the 1278 perovskite composition. The pure phase α -FAPbI₃ with long-term stability is a property that 1279 is absent in the free-standing α -FAPbI₃.

1280 Secondly, the epitaxial system we developed is a generalized approach that can 1281 presumably be applied to the entire halide perovskites family. We have already demonstrated 1282 the growth of epitaxial α -FAPbI₃ on various substrates, which means that we can grow 1283 various epitaxial halide perovskites on one or multiple halide perovskite substrates.

Additionally, the epitaxial strain can be applied to stabilize polymorphs of metastable perovskites. Perovskites with new compositions are recently predicted through computational designs¹³⁷. However, those predicted new perovskites with novel optical and electronic properties may have unstable crystal structures under room temperature or normal working conditions. In this case, epitaxial stabilization can potentially be applied to stabilize these unstable or metastable perovskites on suitable substrates. The reported approach can be generalized to other halide perovskites with different compositions and structures. 1291 Supplementary Table 1. Summary of the substrate growth precursor ratios, the

Cl/Br Solution Ratio	Compositional Br Ratio (%)	Formula	Lattice Parameter (Å)
Cl Only	0	MAPbCl _{3.00} Br _{0.00}	5.70
1/2	50.0	MAPbCl _{1.50} Br _{1.50}	5.83
1/2.5	58.0	MAPbCl _{1.25} Br _{1.75}	5.86
1/3	62.1	MAPbCl _{1.15} Br _{1.85}	5.87
1/4	64.3	MAPbCl _{1.05} Br _{1.95}	5.88
1/6	76.8	MAPbCl _{0.70} Br _{2.30}	5.89
1/8	80.6	MAPbCl _{0.60} Br _{2.40}	5.90
1/19	85.2	MAPbCl _{0.45} Br _{2.55}	5.92
Br Only	100	MAPbCl _{0.00} Br _{3.00}	5.95

1292 resulting substrate compositional Br ratios, and lattice parameters.

1293

1294 Supplementary Table 2. Summary of epitaxial growth substrates and the corresponding

1295 strain measured in α-FAPbI₃.

Substrate Composition	α-FAPbI ₃ (001) Peak (degree)	Strain (%)
MAPbCl _{1.50} Br _{1.50}	13.82	-2.4
MAPbCl _{1.05} Br _{1.95}	13.84	-1.9
MAPbCl _{0.70} Br _{2.30}	13.86	-1.4
MAPbCl _{0.60} Br _{2.40}	13.87	-1.2
MAPbCl _{0.00} Br _{3.00}	13.89	-0.8

1296

1297 Supplementary Table 3. Thermodynamic terms relevant to epitaxial nucleation of

1298 α-FAPbI₃ and δ-FAPbI₃ on cubic MAPbBr₃ substrates.

		α-FAPbI ₃		δ-FAPbI ₃
	Α	В	С	
$\Delta \mathbf{E_{f}}$		-22.79×10 ⁻²		-23.10×10 ⁻²
ΔE_s		1.20×10 ⁻²		0
σ	0.0286×10 ⁻²	0.0429×10 ⁻²	0.0286×10 ⁻²	6.242×10 ⁻² *
$\Delta \mathbf{E}$	-21.5614×10 ⁻²	-21.5471×10 ⁻²	-21.5614×10 ⁻²	-16.858×10 ⁻²
ΔΕ (α-δ)	-4.7034×10 ⁻²	-4.6891×10 ⁻²	-4.7034×10 ⁻²	

1299	The bulk formation energy (ΔE_f), strain energy (ΔE_s), interfacial energy (σ), total energy
1300	change (ΔE), and the difference between of the two phases (ΔE (α - δ)) are in eV Å ⁻² . The
1301	value marked with $*$ indicates that the interface between the substrate and the δ -FAPbI ₃ is
1302	considered incoherent, and the interfacial energy term is set at 1 J m ⁻² = 6.242×10^{-2} eV Å ⁻² .

1304 Supplementary Table 4. Summary of representative halide perovskite photodetectors

1305 with high responsivities in the literature.

Device structure	Structure	Highest R	Light power	Bias	References
Au/MAPbBr ₃ /Au	Planar	$\sim 10 \text{ A W}^{-1}$	0.01 mW cm^{-2}	-2 V	138
Cr/MAPbI ₃ /Cr	Planar	$\sim 20 \text{ A W}^{-1}$	0.1 mW cm^{-2}	-1 V	139
Au/MAPbI ₃ /Au	Planar	~20.4 A W ⁻¹	$2 \mu\mathrm{W}\mathrm{cm}^{-2}$	-1.5 V	140
Au/MAPbBr ₃ /Au	Planar	40 A W ⁻¹	54 µW	-5 V	141
$\begin{array}{c} Au/\\ (BA)_2(MA)_{n-1}Pb_nI_{3n+1}\\ NWs/Au \end{array}$	Planar	2×10 ⁴ A W ⁻¹	10 ⁻⁶ mW cm ⁻²	-2 V	106
Au/FAPbI ₃ /ITO	Vertical	1.3×10 ⁶ A W ⁻¹	$1.1 \times 10^{-7} \mathrm{W} \mathrm{cm}^{-2}$	-1 V	This Work

1307

1308 Supplementary Fig. 1 | Characterization of the lattice parameters and the study of 1309 growth condition. a, Powder XRD pattern of α -FAPbI₃, which is used as a reference of strain-free α -FAPbI₃. The lattice parameter of cubic α -FAPbI₃ is calculated to be 6.35 Å 1310 using the (001) diffraction peak at 13.92°. Peaks from {001} directions are labeled in red. **b**, 1311 Powder XRD patterns of substrates with different ratios of the composition. By tuning the 1312 1313 Cl/Br molar ratio in the growth solution, we can change the Cl/Br ratio as well as the lattice 1314 parameter of the substrate crystal. We note that MAPbCl_{3.00}Br_{0.00}, MAPbCl_{0.00}Br_{3.00}, and their 1315 alloys all have cubic structures. Lattice parameters can be directly calculated by the 2θ peak positions. The inset is an optical image of the corresponding substrates with different Cl/Br 1316 1317 ratios. All powders are made by grinding the bulk single crystals. Scale bar: 5 mm. c, XRD (100) peak positions of α -FAPbI₃ at different growth temperatures. The temperature to grow 1318 α -FAPbI₃ with the highest strain is found to be ~180°C. Further increasing the growth 1319 1320 temperature results in a high growth rate and a thick epitaxial layer of α -FAPbI₃ and 1321 therefore low crystal quality that relaxes the strain. Decreasing the growth temperature below 1322 180°C can lead to slow crystallization and thus a mixed epitaxial alloy layer at the interface, 1323 which shifts the XRD peak position to higher angles. d, XRD (100) peak positions of α -FAPbI₃ at different growth solution concentrations. Concentrations above 1.2 mol L⁻¹ 1324 result in high defect concentration and therefore strain relaxation, due to the fast 1325 crystallization rate and the thick epitaxial layer. Concentrations below 1.0 mol L^{-1} will slow 1326 down the crystallization process and lead to a mixed epitaxial alloy layer at the interface. The 1327 1328 vertical dash lines in **c** and **d** show the peak position of a strain-free powder sample. (a.u., 1329 arbitrary units).

1331 Supplementary Fig. 2 | Schematic crystal structures of epitaxial α -FAPbI₃ on 1332 MAPbCl_xBr_{3-x} and the optical image of α -FAPbI₃ on a Cl-rich substrate. a, Schematic crystal structures of α -FAPbI₃, MAPbCl_xBr_{3-x}, and the epitaxial heterostructure showing the 1333 1334 crystallographic orientation of the epitaxial α -FAPbI₃ and the MAPbCl_xBr_{3-x} substrate, with 1335 distorted PbI₆ octahedron inorganic framework in the epitaxial layer under compressive interfacial strain. **b**, An optical image of FAPbI₃ grown on MAPbCl_{2.00}Br_{1.00} substrate using 1336 the same growth method as the other substrates. Due to the large lattice mismatch between 1337 1338 the substrate and α -FAPbI₃, the α -FAPbI₃ crystallizes randomly rather than epitaxially on the substrate surface. The lack of epitaxial stabilization leads to quick phase transformation from 1339 metastable α -FAPbI₃ to δ -FAPbI₃ at room temperature. Scale bar: 200 μ m. 1340

1341

Supplementary Fig. 3 | XRD diffraction peak FWHM. a, Diffraction peak FWHM study 1342 of the epitaxial α -FAPbI₃ thin films under different strain magnitudes. Results show that the 1343 1344 epitaxially strained α -FAPbI₃ thin films have a relatively higher diffraction peak FWHM than 1345 that of the strain-free α -FAPbI₃ crystal due to the lattice strain and the reduced dimension. **b**, statistical study of the α -FAPbI₃ (001) peak FWHM of the strained and the strain-relaxed 1346 1347 samples. Results show that the diffraction peak FWHM of the strained epitaxial α -FAPbI₃ 1348 thin films ($\sim 0.07^{\circ}$) is ~ 3 times smaller than that of the strain-relaxed one ($\sim 0.25^{\circ}$). Note the strain-relaxed epitaxial α -FAPbI₃ thin films come from Extended Data Fig. 1g. Number of 1349 1350 experiments n = 5 for each strain value.

Supplementary Fig. 4 | Raman spectra of α -FAPbI₃ and the substrates. Raman full 1352 spectra of **a**, strain-free α -FAPbI₃ bulk crystal and **b**, -2.4% strained α -FAPbI₃ thin film 1353 showing the absence of other peaks outside the range of 100 to 400 cm⁻¹. The strain-free 1354 α -FAPbI₃ crystal is less Raman-active than the strained α -FAPbI₃ thin film, so the relative 1355 1356 peak intensity of the strain-free crystal is much weaker. The comparison of the experimental and simulated Raman spectra of the c, strain-free, and d, -2.4% strained α -FAPbI₃ lattices. 1357 The discrepancy between experimental and simulated Pb-I stretching wavenumbers may be 1358 1359 due to the anharmonicity of the bonds and the van der Waals interactions between the inorganic cages and organic cations. For the strained lattice, an obvious peak splitting takes 1360 place in both the experimental and the simulated spectra. The splitting of the Pb-I symmetric 1361 stretching peak originates from the in-plane compression and out-of-plane stretching, while 1362 the intensity enhancement comes from the breakage of the cubic symmetry. The weak FA⁺ 1363 cation bending peak at 377 cm⁻¹ fails to be detected, which is due to the dynamic FA⁺ cation 1364 rotation at room temperature. e, Raman spectra of MAPbCl_{0.00}Br_{3.00}, MAPbCl_{0.60}Br_{2.40}, 1365 MAPbCl_{0.70}Cl_{2.30}, MAPbCl_{1.05}Br_{1.95}, and MAPbCl_{1.50}Br_{1.50} substrates with a 488-nm laser as 1366 the excitation source. No Raman signals can be detected in the wavenumber range of interest. 1367 1368 Therefore, possible interference from the substrates can be excluded. f, Thickness-dependent Raman spectra of -2.4% strained α -FAPbI₃ samples. Strained α -FAPbI₃ thin film has a sharp 1369

and strong signal, which can be attributed to the increased tetragonality of the crystal
structure. As the film thickness increases, the strain gets gradually relaxed and the lattice
transforms back to less Raman-active cubic structure. The Raman peak position also shifts to
lower wavenumbers because of the softer and longer Pb-I bonds (inset image).

1374

1375 Supplementary Fig. 5 | FWHM of the PL peaks of epitaxial layers under different 1376 strains. The results show that the FWHM of the PL peak increases with the strain, due to the 1377 strain-induced dislocations that broaden the PL peak. A bulk α -FAPbI₃ single crystal is used 1378 as the strain-free reference. Note the number of experiments n = 5 for each strain value.

Supplementary Fig. 6 | Band diagram of the heterostructure and the interfacial charge 1380

transfer. Excited carriers in the α -FAPbI₃ will not transfer to the MAPbBr₃ due to the energy 1381 1382

barrier. The analysis shows that the charged carrier transfer in the heterojunction can be

1383 excluded due to the straddling band alignment with a prohibited carrier transfer direction and

1384 a large energy barrier.

1385

1386 Supplementary Fig. 7 | Focal point dependent PL measurements of strain-free and **mixed** α -FAPbI₃. **a**, Focal-point-dependent confocal PL spectra of a strain-free α -FAPbI₃ 1387 1388 bulk crystal. The redshift of the PL peak from ~1.523 eV to ~1.516 eV, less pronounced than the PL peak redshift of the strained sample in Fig. 2b, is due to reabsorption. b, 1389 Focal-point-dependent confocal PL spectra of a mixed epitaxial α -FAPbI₃ grown at a low 1390 1391 temperature. Note the mixed sample came from the mixed epitaxial growth with low 1392 temperature and low concentration in Supplementary Fig. 1. The increase of focus depth 1393 causes the PL peak to blueshift, due to the increase of Br and Cl incorporation in the epitaxial 1394 layer.

1396 Supplementary Fig. 8 | Elastic strain relaxation study of the epitaxial α-FAPbI₃ thin 1397 films. Planar strain distribution of the α-FAPbI₃ with **a**, -1.2% and **b**, -2,4% strain. Vertical 1398 strain distribution of the α-FAPbI₃ with **c**, -1.2% and **d**, -2,4% strain. Results show uniform 1399 strain distribution in both α-FAPbI₃ thin films. Thickness-dependent strain distribution of the 1400 α-FAPbI₃ with **e**, -1.2% and **f**, -2,4% strain. Colors are correlated with the lines in **c** and **d**. 1401 Results indicate that the elastic strain relaxations in both α-FAPbI₃ thin film are 0.096% and 1402 0.093%, respectively.

1404 Supplementary Fig. 9 | Film-thickness-dependent PL measurements of epitaxial 1405 α -FAPbI₃ on MAPbCl_{1.50}Br_{1.50}. The PL properties of strained α -FAPbI₃ films show a 1406 strong thickness dependence. As the film thickness increases, the PL position gradually shifts 1407 back to the position of the free-standing bulk crystals. This can be attributed to the plastic 1408 strain relaxation as the film gets thicker.

1409

Supplementary Fig. 10 | Possible carrier collection by the interfacial carrier transfer 1410 1411 during Hall effect measurements. a, The schematic structure of the device. Parylene-C 1412 (grey) is used as an insulating layer to prevent the injection of carriers from the Au electrode 1413 (yellow) to the substrate. **b**, The bandgap diagram of the heterostructure shows that the large energy barrier between the α -FAPbI₃ and the MAPbBr₃ blocks the carrier injection to the 1414 MAPbBr₃. **c**, Current density distribution by FEA simulation. The upper panel shows the 1415 1416 current mapping where the current density in the epitaxial layer is much higher than that of 1417 the substrate. The lower panel shows the zoomed-in current distribution image around the 1418 electrode. Red arrows show the direction of current flow, which suggests a minimal carrier 1419 injection into the substrate due to the energy. **d**, Current density distribution along the vertical 1420 orange line in **c**, where the current in the substrate takes 0.8% of the total current.

1421

1422 Supplementary Fig. 11 | SCLC measurements of the epitaxial α -FAPbI₃ with different 1423 strains. a, Strain-dependent trap density of the epitaxial α -FAPbI₃. Note the number of 1424 experiments n = 5 for each strain value. **b**, Statistics of the strain-dependent trap density. Results show that the average trap density will increase with increasing the strain, which can 1425 1426 be attributed to the strain-induced defects. Meanwhile, the standard deviation of the trap 1427 density values also increases with the strain, indicating the increased disorder due to the higher defect density with the strain. c. Scan-rate-dependent I-V curves. I-V curves with 10 1428 mV s⁻¹ and 50 mV s⁻¹ scan rates are similar, indicating that these scan rates are sufficiently 1429 slow to avoid artificial results. The *I–V* curve with 200 mV s⁻¹ results in a smaller V_{TFL} 1430 1431 because of the limited response of free carriers from the fast scan. Further increasing the scan rate to 1000 mV s⁻¹ leads to the vanish of the trap-filling process. **d**, I-V curves with different 1432 scan directions of the same device. The high similarity of the two curves concludes that the 1433 scan direction will not affect the SCLC measurements due to the symmetric 1434 1435 Au/Perovskite/Au device structure.

1436

1437 Supplementary Fig. 12 | C- ω measurements of the epitaxial α -FAPbI₃ to evaluate the trap density. a, C- ω spectra of the epitaxial α -FAPbI₃ thin films with different strain 1438 1439 magnitudes. The low-frequency capacitance originates from the carrier trapping/detrapping 1440 processes. The larger capacitance at a higher strain magnitude suggests a higher density of 1441 traps. The high-frequency capacitance is attributed to the geometrical capacitance and the 1442 depletion capacitance. **b**, Trap density distribution extracted from the C- ω spectra. An obvious trap density increment is evident with increasing the strain magnitude. The fitted trap 1443 1444 densities (n_t) by the Gaussian distribution equation indicate a higher trap density at a higher 1445 strain magnitude.

1446

Supplementary Fig. 13 | First-principles calculations of epitaxial stabilization. a, 1447 Schematic heterostructural models used to calculate the epitaxial α -FAPbI₃ (001)/MAPbBr₃ 1448 1449 (001) interface. The two interface terminations studied are FAI/PbBr₂ and PbI₂/MABr. In 1450 each model, the blue plane indicates the interface, the upper section indicates the FAPbI₃ film, and the lower section indicates the MAPbBr₃ substrate. **b**, Calculated phase diagram for 1451 1452 α -FAPbI₃ and epitaxial α -FAPbI₃ (001)/MAPbBr₃ interface. The long, narrow region marked 1453 in green depicts the thermodynamically stable range for equilibrium growth of α -FAPbI₃ 1454 under different I and Pb chemical potentials. Outside this region, the compound decomposes into FAI or PbI₂. Three representative points A ($\Delta \mu_{I} = -1.02 \text{ eV}$, $\Delta \mu_{Pb} = 0 \text{ eV}$), B ($\Delta \mu_{I} =$ 1455 $-0.50 \text{ eV}, \Delta \mu_{Pb} = -1.03 \text{ eV}$, and C ($\Delta \mu_I = 0 \text{ eV}, \Delta \mu_{Pb} = -2.04 \text{ eV}$) are selected for calculating 1456 1457 the interfacial energy. The red dashed line separates the phase diagram into stability regions of the two different interfacial terminations in **a**. μ represents the chemical potentials of the 1458 1459 corresponding atoms.

Supplementary Fig. 14 | Stability investigation of the epitaxial and the removed 1461 1462 α -FAPbI₃. Images of the **a**, as-polished and the **b**, 24-hour aged epitaxial α -FAPbI₃ thin film. The left half of the epitaxial α -FAPbI₃ thin film is removed by a sandpaper while the right 1463 half of the epitaxial α -FAPbI₃ thin film remains on the substrate. Removed α -FAPbI₃ that is 1464 attached to the upper half of the sandpaper suffers from phase transition from black α phase 1465 1466 to yellow δ phase after 24 hours. The epitaxial α -FAPbI₃ thin film remains on the substrate is 1467 stable without phase transition. Results show the epitaxial stabilization of the epitaxial α -FAPbI₃ thin film relies on the constraint from the substrate lattices. 1468

1470 **Supplementary Fig. 15** | **Schematic band diagrams of photodetectors.** Left panel is the 1471 flat band diagram of the photodetector. Due to the compressive strain, the VBM of α -FAPbI₃ 1472 at the interface will be pushed up and align better with the Au Fermi level (-5.4 eV), which 1473 allows better hole transfer from α -FAPbI₃ to Au and therefore enhances the device 1474 performance.

а

1475

1476 **Supplementary Fig. 16** | **Photodiode-type photodetector characterizations. a**, The band 1477 diagram of the photodetector. An Au/PEDOT:PSS/ α -FAPbI₃/SnO₂/ITO structure is used to 1478 build a photodiode. In this structure, the injection of external carriers under reverse bias is 1479 efficiently blocked due to the large energy barrier. b, *I–V* curves the photodetector. The dark 1480 current is reduced to ~10⁻⁸ A due to the diode structure. **c**, Responsivity and photocurrent of 1481 the photodetector under different illumination power levels. Results show that the 1482 responsivity is lower than 1 with the diode structure.

1483	References				
1484					
1485	1	Sun, M. et al. All-Inorganic Perovskite Nanowires-InGaZnO Heterojunction for			
1486		High-Performance Ultraviolet-Visible Photodetectors. ACS Appl Mater Interfaces 10,			
1487		7231-7238, (2018).			
1488	2	Chen, J. et al. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown			
1489		on Metal Oxide Perovskite (SrTiO3). Journal of the American Chemical Society 139,			
1490		13525-13532, (2017).			
1491	3	Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L. & Joselevich, E. Surface-Guided			
1492		CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent			
1493		Photoluminescence and Fast Photoconductive Response. <i>Nano Lett</i> 18 , 424-433, (2018).			
1494	4	Wang, Y. et al. Nontrivial strength of van der Waals epitaxial interaction in soft perovskites.			
1495		Physical Review Materials 2 , 076002, (2018).			
1496	5	Wang, Y. et al. High-Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden			
1497		Carrier Dynamics. Advanced Materials 29, (2017).			
1498	6	Wang, L. et al. Unlocking the Single-Domain Epitaxy of Halide Perovskites. Advanced			
1499		Materials Interfaces, (2017).			
1500	7	Li, X., Luo, Y., Holt, M. V., Cai, Z. & Fenning, D. P. Residual Nanoscale Strain in Cesium Lead			
1501		Bromide Perovskite Reduces Stability and Shifts Local Luminescence. Chemistry of Materials,			
1502		(2019).			
1503	8	Wang, Y. <i>et al.</i> Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft			
1504		crystals. <i>Science Advances</i> 4 , eaar3679, (2018).			
1505	9	Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small			
1506		ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy,			
1507		(2018).			
1508	10	Zheng, X. et al. Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by			
1509		Strain Relaxation. ACS Energy Letters 1, 1014-1020, (2016).			
1510	11	Shai, X. et al. Achieving ordered and stable binary metal perovskite via strain engineering.			
1511		<i>Nano Energy</i> 48 , 117-127, (2018).			
1512	12	Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells.			
1513		<i>Science</i> 360 , 67-70, (2018).			
1514	13	Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy &			
1515		Environmental Science 12, 596-606, (2019).			
1516	14	Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of			
1517		perovskite solar cells. Science Advances 3, eaao5616, (2017).			
1518	15	Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics.			
1519		Nature Communications 10, 815, (2019).			
1520	16	Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science,			
1521		eaax3878, (2019).			
1522	17	Lü, X. et al. Enhanced Structural Stability and Photo Responsiveness of CH3NH3SnI3			
1523		Perovskite via Pressure-Induced Amorphization and Recrystallization. Advanced Materials 28,			
1524		8663-8668, (2016).			
1525	18	Liu, G. et al. Pressure-Induced Bandgap Optimization in Lead-Based Perovskites with			
1526		Prolonged Carrier Lifetime and Ambient Retainability. Advanced Functional Materials 27,			

1527		(2017).
1528	19	Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by
1529		pressure-induced anisotropic deformation. <i>Science Advances</i> 5, eaav9445, (2019).
1530	20	Ma, Z. et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature
1531		<i>Communications</i> 9 , 4506, (2018).
1532	21	Jaffe, A., Lin, Y., Mao, W. L. & Karunadasa, H. I. Pressure-induced metallization of the halide
1533		perovskite (CH3NH3) Pbl3. Journal of the American Chemical Society 139, 4330-4333,
1534		(2017).
1535	22	Han, Q. et al. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural,
1536		Optical, and Electrical Properties. Advanced Materials 28, 2253-2258, (2016).
1537	23	Wang, W. F. et al. Growth of mixed-halide perovskite single crystals. Crystengcomm 20,
1538		1635-1643, (2018).
1539	24	Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite
1540		single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics 9,
1541		679, (2015).
1542	25	Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by
1543		inverse temperature crystallization. Nature Communications 6, 7586, (2015).
1544	26	Lei, Y. et al. Controlled Homoepitaxial Growth of Hybrid Perovskites. Advanced Materials 30,
1545		1705992, (2018).
1546	27	Suryanarayana, C. & Norton, M. G. X-ray diffraction: a practical approach. (Springer Science
1547		& Business Media, 2013).
1548	28	Birkholz, M. Thin film analysis by X-ray scattering. (John Wiley & Sons, 2006).
1549	29	Gubicza, J. X-ray line profile analysis in materials science. (IGI Global, 2014).
1550	30	Hartmann, J. M., Abbadie, A. & Favier, S. Critical thickness for plastic relaxation of SiGe on
1551		Si(001) revisited. <i>Journal of Applied Physics</i> 110 , 083529, (2011).
1552	31	Steele, J. A. <i>et al.</i> Direct Laser Writing of δ - to α -Phase Transformation in Formamidinium
1553		Lead Iodide. <i>ACS Nano</i> 11 , 8072-8083, (2017).
1554	32	Frank, O. et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 5,
1555		2231-2239, (2011).
1556	33	Chen, J. et al. Probing Strain in Bent Semiconductor Nanowires with Raman Spectroscopy.
1557		Nano Letters 10, 1280-1286, (2010).
1558	34	Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: Gpeak splitting,
1559		Grüneisen parameters, and sample orientation. <i>Physical Review B</i> 79 , 205433, (2009).
1560	35	Quarti, C. et al. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of
1561		theory and experiment. The journal of physical chemistry letters 5, 279-284, (2013).
1562	36	Pérez-Osorio, M. A. et al. Raman Spectrum of the Organic-Inorganic Halide Perovskite
1563		CH3NH3Pbl3 from First Principles and High-Resolution Low-Temperature Raman
1564		Measurements. The Journal of Physical Chemistry C, (2018).
1565	37	Pering, S. R. et al. Azetidinium lead iodide for perovskite solar cells. Journal of Materials
1566		<i>Chemistry A</i> 5 , 20658-20665, (2017).
1567	38	Steele, J. A. <i>et al.</i> Direct Laser Writing of δ -to α -Phase Transformation in Formamidinium Lead
1568		lodide. ACS nano, (2017).
1569	39	Niemann, R. G. et al. Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3
1570		(X = CI, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study. The Journal of Physical

1571 Chemistry C 120, 2509-2519, (2016). 1572 40 Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead 1573 iodide perovskite. Science advances 2, e1601650, (2016). 1574 41 Taylor, V. C. A. et al. Investigating the Role of the Organic Cation in Formamidinium Lead 1575 lodide Perovskite Using Ultrafast Spectroscopy. The Journal of Physical Chemistry Letters 9, 1576 895-901, (2018). 1577 Govinda, S. et al. Critical Comparison of FAPbX3 and MAPbX3 (X = Br and Cl): How Do They 42 1578 Differ? The Journal of Physical Chemistry C 122, 13758-13766, (2018). 1579 43 Nakada, K., Matsumoto, Y., Shimoi, Y., Yamada, K. & Furukawa, Y. Temperature-Dependent 1580 Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, CH3NH3PbX3 (X 1581 = I, Br). *Molecules* 24, 626, (2019). 1582 44 Ledinský, M. et al. Raman Spectroscopy of Organic-Inorganic Halide Perovskites. The Journal 1583 of Physical Chemistry Letters 6, 401-406, (2015). 1584 Li, D. et al. Size-dependent phase transition in methylammonium lead iodide perovskite 45 1585 microplate crystals. Nature Communications 7, 11330, (2016). 1586 46 Sarmah, S. P. et al. Double Charged Surface Layers in Lead Halide Perovskite Crystals. Nano 1587 Letters 17, 2021-2027, (2017). 1588 47 Kanemitsu, Y. Luminescence spectroscopy of lead-halide perovskites: materials properties 1589 and application as photovoltaic devices. Journal of Materials Chemistry C 5, 3427-3437, 1590 (2017). 1591 48 Xie, L.-Q. et al. Understanding the Cubic Phase Stabilization and Crystallization Kinetics in 1592 Mixed Cations and Halides Perovskite Single Crystals. Journal of the American Chemical 1593 Society 139, 3320-3323, (2017). 1594 Wenger, B. et al. Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite 49 1595 single crystals. Nature communications 8, 590, (2017). 1596 Gershon, T. et al. Relationship between Cu2ZnSnS4 guasi donor-acceptor pair density and 50 1597 solar cell efficiency. Applied Physics Letters 103, 193903, (2013). 1598 51 Nayak, P. et al. The impact of Bi3+ heterovalent doping in organic-inorganic metal halide 1599 perovskite crystals. Journal of the American Chemical Society, (2017). 1600 52 Mićić, O. I. et al. Size-Dependent Spectroscopy of InP Quantum Dots. The Journal of Physical 1601 Chemistry B 101, 4904-4912, (1997). 1602 Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Homogeneous 53 1603 Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. The 1604 Journal of Physical Chemistry Letters 5, 1300-1306, (2014). 1605 Yan, Z.-Z., Jiang, Z.-H., Lu, J.-P. & Ni, Z.-H. Interfacial charge transfer in WS2 54 1606 monolayer/CsPbBr3 microplate heterostructure. Frontiers of Physics 13, 138115, (2018). 1607 Zi-Yu, P., Jian-Long, X., Jing-Yue, Z., Xu, G. & Sui-Dong, W. Solution-Processed High-55 1608 Performance Hybrid Photodetectors Enhanced by Perovskite/MoS2 Bulk Heterojunction. 1609 Advanced Materials Interfaces 0, 1800505, (2018). 1610 Li, H., Zheng, X., Liu, Y., Zhang, Z. & Jiang, T. Ultrafast interfacial energy transfer and 56 1611 interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure. Nanoscale 1612 10, 1650-1659, (2018). 1613 57 Zhu, H. et al. Interfacial Charge Transfer Circumventing Momentum Mismatch at 1614 Two-Dimensional van der Waals Heterojunctions. Nano Letters 17, 3591-3598, (2017).

- 161558Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing Interlayer Interactions in1616Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and1617MoSe2/WSe2. Nano Letters 15, 5033-5038, (2015).
- 161859Comin, R. *et al.* Structural, optical, and electronic studies of wide-bandgap lead halide1619perovskites. Journal of Materials Chemistry C 3, 8839-8843, (2015).
- 162060Rudin, S., Reinecke, T. L. & Segall, B. Temperature-dependent exciton linewidths in1621semiconductors. *Physical Review B* **42**, 11218-11231, (1990).
- 162261Wright, A. D. *et al.* Electron-phonon coupling in hybrid lead halide perovskites. *Nature*1623*Communications* 7, 11755, (2016).
- 162462Lee, J., Koteles, E. S. & Vassell, M. O. Luminescence linewidths of excitons in GaAs quantum1625wells below 150 K. *Physical Review B* **33**, 5512-5516, (1986).
- 162663Dar, M. I. *et al.* Origin of unusual bandgap shift and dual emission in organic-inorganic lead1627halide perovskites. Science Advances 2, (2016).
- 162864Ni, L. *et al.* Real-Time Observation of Exciton–Phonon Coupling Dynamics in Self-Assembled1629Hybrid Perovskite Quantum Wells. ACS Nano 11, 10834-10843, (2017).
- 1630 65 Thirumal, K. *et al.* Morphology-Independent Stable White-Light Emission from Self-Assembled
 1631 Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic
 1632 Framework. *Chemistry of Materials* 29, 3947-3953, (2017).
- 163366Ferreira, A. C. *et al.* Elastic Softness of Hybrid Lead Halide Perovskites. *Physical Review*1634*Letters* 121, 085502, (2018).
- 163567Zienkiewicz, O. C., Taylor, R. L., Nithiarasu, P. & Zhu, J. The finite element method. Vol. 31636(McGraw-hill London, 1977).
- 1637 68 Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. *Nature materials* 17, 377,
 1638 (2018).
- 1639 69 Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations.
 1640 *Journal of Crystal Growth* 27, 118-125, (1974).
- 1641 70 People, R. & Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for
- 1642 GexSi1-x/Si strained-layer heterostructures. *Applied Physics Letters* **47**, 322-324, (1985).
- 164371Kosyachenko, L. A. Solar Cells: New Aspects and Solutions. (BoD-Books on Demand,16442011).
- 164572Jiang, S. *et al.* Phase Transitions of Formamidinium Lead Iodide Perovskite under Pressure.1646Journal of the American Chemical Society, (2018).
- 164773Chen, Z. et al. Remote Phononic Effects in Epitaxial Ruddlesden–Popper Halide Perovskites.1648The Journal of Physical Chemistry Letters, 6676-6682, (2018).
- 164974Ge, C. *et al.* Ultralow Thermal Conductivity and Ultrahigh Thermal Expansion of Single-Crystal1650Organic–Inorganic Hybrid Perovskite CH3NH3PbX3 (X = Cl, Br, I). *The Journal of Physical*1651*Chemistry C* **122**, 15973-15978, (2018).
- 165275Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y. & Wei, S.-H. Halide perovskite materials for solar1653cells: a theoretical review. *Journal of Materials Chemistry A* **3**, 8926-8942, (2015).
- 165476Wang, C., Ecker, B. R., Wei, H., Huang, J. & Gao, Y. Environmental Surface Stability of the1655MAPbBr3 Single Crystal. *The Journal of Physical Chemistry C* **122**, 3513-3522, (2018).
- 165677Shi, D. *et al.* Low trap-state density and long carrier diffusion in organolead trihalide perovskite1657single crystals. Science 347, 519-522, (2015).

- 165878Dong, Q. *et al.* Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single1659crystals. Science 347, 967-970, (2015).
- 1660 79 Wu, Z., Yao, W., London, A. E., Azoulay, J. D. & Ng, T. N. Elucidating the Detectivity Limits in
 1661 Shortwave Infrared Organic Photodiodes. *Advanced Functional Materials* 28, 1800391,
 1662 (2018).
- 166380Stolterfoht, M., Armin, A., Philippa, B. & Neher, D. The Role of Space Charge Effects on the1664Competition between Recombination and Extraction in Solar Cells with Low-Mobility1665Photoactive Layers. The Journal of Physical Chemistry Letters 7, 4716-4721, (2016).
- 166681Mihailetchi, V. D., Xie, H. X., de Boer, B., Koster, L. J. A. & Blom, P. W. M. Charge Transport1667and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene1668Bulk-Heterojunction Solar Cells. Advanced Functional Materials 16, 699-708, (2006).
- 166982Herz, L. M. Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms1670and Limits. ACS Energy Letters 2, 1539-1548, (2017).
- 167183Chen, B., Yang, M., Priya, S. & Zhu, K. Origin of J–V Hysteresis in Perovskite Solar Cells. The1672Journal of Physical Chemistry Letters 7, 905-917, (2016).
- 167384Wei, J. *et al.* Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar1674Cells. *The Journal of Physical Chemistry Letters* **5**, 3937-3945, (2014).
- 167585Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and1676aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy &1677Environmental Science 8, 995-1004, (2015).
- 167886Bain, A. K. & Chand, P. Ferroelectrics: Principles and Applications. (John Wiley & Sons,16792017).
- 168087Li, C., Guerrero, A., Huettner, S. & Bisquert, J. Unravelling the role of vacancies in lead halide1681perovskite through electrical switching of photoluminescence. Nature Communications 9,16825113, (2018).
- 168388Li, C. *et al.* Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide1684Perovskites. *Small* **13**, 1701711, (2017).
- 168589Shao, Y. *et al.* Grain boundary dominated ion migration in polycrystalline organic-inorganic1686halide perovskite films. *Energy & Environmental Science* **9**, 1752-1759, (2016).
- 168790Lee, J.-W., Kim, S.-G., Yang, J.-M., Yang, Y. & Park, N.-G. Verification and mitigation of ion1688migration in perovskite solar cells. *APL Materials* **7**, 041111, (2019).
- 1689 91 Yun, J. S. *et al.* Critical Role of Grain Boundaries for Ion Migration in Formamidinium and
 1690 Methylammonium Lead Halide Perovskite Solar Cells. *Advanced Energy Materials* 6, 1600330,
 1691 (2016).
- 169292Xing, J. *et al.* Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light1693and suppression in single crystals. *Physical Chemistry Chemical Physics* **18**, 30484-30490,1694(2016).
- 1695 93 Kang, K. *et al.* High-Performance Solution-Processed Organo-Metal Halide Perovskite
 1696 Unipolar Resistive Memory Devices in a Cross-Bar Array Structure. *Advanced Materials* 31,
 1697 1804841, (2019).
- 169894Hu, Y. *et al.* Ultrathin Cs3Bi2I9 Nanosheets as an Electronic Memory Material for Flexible1699Memristors. Advanced Materials Interfaces 4, (2017).
- 170095Calado, P. *et al.* Evidence for ion migration in hybrid perovskite solar cells with minimal1701hysteresis. Nature Communications 7, 13831, (2016).

- 170296Zimmermann, E. *et al.* Characterization of perovskite solar cells: Towards a reliable1703measurement protocol. *APL Materials* **4**, 091901, (2016).
- 170497Ayers, J. E., Kujofsa, T., Rago, P. & Raphael, J. Heteroepitaxy of semiconductors: theory,1705growth, and characterization. (CRC press, 2016).
- 170698Pohl, U. W. Epitaxy of Semiconductors: Introduction to Physical Principles. (Springer1707Science & Business Media, 2013).
- 170899Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nature1709Energy 1, 16149, (2016).
- 1710100Liu, Z. *et al.* Gas-solid reaction based over one-micrometer thick stable perovskite films for1711efficient solar cells and modules. *Nature Communications* **9**, 3880, (2018).
- 1712101Wang, K.-L. *et al.* Tailored Phase Transformation of CsPbl2Br Films by Copper(II) Bromide for1713High-Performance All-Inorganic Perovskite Solar Cells. *Nano Letters* **19**, 5176-5184, (2019).
- 1714 102 Wang, L. *et al.* A Eu(3+)-Eu(2+) ion redox shuttle imparts operational durability to Pb-I 1715 perovskite solar cells. *Science* **363**, 265-270, (2019).
- 1716103Zhao, Y. *et al.* Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for1717efficient and stable solar cells. *Nature Communications* **9**, 1607, (2018).
- 1718104Yang, D. *et al.* High efficiency planar-type perovskite solar cells with negligible hysteresis1719using EDTA-complexed SnO2. Nature Communications 9, 3239, (2018).
- 1720105Wu, W.-Q. *et al.* Bilateral alkylamine for suppressing charge recombination and improving1721stability in blade-coated perovskite solar cells. *Science Advances* **5**, eaav8925, (2019).
- 1722106Feng, J. *et al.* Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive1723photodetectors. *Nature Electronics* 1, 404-410, (2018).
- 1724 107 Kong, W. *et al.* Organic Monomolecular Layers Enable Energy-Level Matching for Efficient
 1725 Hole Transporting Layer Free Inverted Perovskite Solar Cells. *ACS Nano* 13, 1625-1634,
 1726 (2019).
- 1727108Liu, X. *et al.* 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill1728factor and eliminated hysteresis. *Energy & Environmental Science* **12**, 1622-1633, (2019).
- 1729109Saidaminov, M. I. *et al.* High-quality bulk hybrid perovskite single crystals within minutes by1730inverse temperature crystallization. *Nature communications* 6, (2015).
- 1731 110 Leijtens, T. *et al.* Carrier trapping and recombination: the role of defect physics in enhancing
 1732 the open circuit voltage of metal halide perovskite solar cells. *Energy & Environmental Science*1733 9, 3472-3481, (2016).
- 1734111Brenes, R. *et al.* Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single1735Crystals. Joule 1, 155-167, (2017).
- 1736 112 Yao, W. *et al.* Organic Bulk Heterojunction Infrared Photodiodes for Imaging Out to 1300 nm.
 1737 ACS Applied Electronic Materials, (2019).
- 1738 113 Street, R. A., Yang, Y., Thompson, B. C. & McCulloch, I. Capacitance Spectroscopy of Light
 1739 Induced Trap States in Organic Solar Cells. *The Journal of Physical Chemistry C* 120,
 1740 22169-22178, (2016).
- 1741 114 Hwang, T. *et al.* Electronic Traps and Their Correlations to Perovskite Solar Cell Performance
 1742 via Compositional and Thermal Annealing Controls. *ACS Applied Materials & Interfaces* 11,
 1743 6907-6917, (2019).
- 1744115Kovalenko, A., Pospisil, J., Zmeskal, O., Krajcovic, J. & Weiter, M. Ionic origin of a negative1745capacitance in lead halide perovskites. *physica status solidi (RRL) Rapid Research Letters*

1748 Charge Selective Contact in Halide Perovskite through Impedance Spectroscopy. Advanced 1749 Materials Interfaces 0, 1901193, (2019). 1750 Han, C. et al. Unraveling surface and bulk trap states in lead halide perovskite solar cells using 117 1751 impedance spectroscopy. Journal of Physics D: Applied Physics 51, 095501, (2018). 1752 118 Samiee, M. et al. Defect density and dielectric constant in perovskite solar cells. Applied 1753 Physics Letters 105, 153502, (2014). 1754 119 Yi, C. et al. Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high 1755 performance perovskite solar cells. Energy & Environmental Science 9, 656-662, (2016). 1756 120 Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through 1757 intramolecular exchange. Science 348, 1234-1237, (2015). 1758 121 Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar 1759 cells. Nature 517, 476-480, (2015). 1760 Lee, J.-W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. 122 1761 Nature Communications 9, 3021, (2018). 1762 123 Yuan, S. et al. NbF5: A Novel α-Phase Stabilizer for FA-Based Perovskite Solar Cells with 1763 High Efficiency. Advanced Functional Materials 0, 1807850, (2019). 1764 124 Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface 1765 functionalization. Nano letters 17, 4405-4414, (2017). 1766 125 Gu, L. et al. Significantly improved black phase stability of FAPbI3 nanowires via spatially 1767 confined vapor phase growth in nanoporous templates. Nanoscale 10, 15164-15172, (2018). 1768 126 Zhou, Y., Kwun, J., Garces, H. F., Pang, S. & Padture, N. P. Observation of phase-retention 1769 behavior of the HC (NH 2) 2 Pbl 3 black perovskite polymorph upon mesoporous TiO 2 1770 scaffolds. Chemical Communications 52, 7273-7275, (2016). 1771 127 Li, B. et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 1772 perovskites for high-performance solar cells. Nat Commun 9, 1076, (2018). 1773 128 Ma, S. et al. Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable α-CsPbl3 1774 Perovskite by Nanoconfined Growth. Small 0, 1900219, (2019). 1775 129 Liu, M. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature, (2019). 1776 130 Lee, J. H. et al. Epitaxial Stabilization of a New Multiferroic Hexagonal Phase of TbMnO3 Thin 1777 Films. Advanced Materials 18, 3125-3129, (2006). 1778 131 Vailionis, A., Siemons, W. & Koster, G. Room temperature epitaxial stabilization of a 1779 tetragonal phase in ARuO3 (A=Ca and Sr) thin films. Applied Physics Letters 93, 051909, 1780 (2008). 1781 Xu, Z., Salvador, P. & Kitchin, J. R. First-Principles Investigation of the Epitaxial Stabilization of 132 1782 Oxide Polymorphs: TiO2 on (Sr,Ba)TiO3. ACS Applied Materials & Interfaces 9, 4106-4118, 1783 (2017). 1784 Liu, B., Long, M., Cai, M.-Q., Hao, X. & Yang, J. Ferroelectric Polarization in CsPbl3/CsSnl3 133 1785 Perovskite Heterostructure. The Journal of Physical Chemistry C, (2018). 1786 134 Ahmadi, M., Wu, T. & Hu, B. A Review on Organic-Inorganic Halide Perovskite 1787 Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, (2017). 1788 135 Yang, Z. et al. High-Performance Single-Crystalline Perovskite Thin-Film Photodetector. 1789 Advanced Materials, (2018).

Khan, M. T., Salado, M., Almohammedi, A., Kazim, S. & Ahmad, S. Elucidating the Impact of

1746

1747

116

11, 1600418, (2017).

- 1790136Zhao, Y., Li, C. & Shen, L. Recent advances on organic-inorganic hybrid perovskite1791photodetectors with fast response. *InfoMat* **0**, (2019).
- 1792 137 Li, Y. & Yang, K. High-throughput computational design of organic–inorganic hybrid halide
 1793 semiconductors beyond perovskites for optoelectronics. *Energy & Environmental Science* 12,
 1794 2233-2243, (2019).
- 1795 138 Haihua, Z. *et al.* A Two-Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array
 1796 based on Ultrafast Light-Harvesting Quantum Wells. *Angewandte Chemie International Edition*1797 0, 7748-7752, (2018).
- 1798139Ye, F. *et al.* High-Quality Cuboid CH3NH3PbI3 Single Crystals for High Performance X-Ray1799and Photon Detectors. Advanced Functional Materials 0, 1806984, (2018).
- 1800140Ji, L., Hsu, H.-Y., Lee, J., Bard, A. J. & Yu, E. T. High performance photodetectors based on1801solution-processed epitaxial grown hybrid halide perovskites. *Nano letters*, (2018).
- 1802141Zhang, Y. *et al.* Trash into Treasure: δ-FAPbI3 Polymorph Stabilized MAPbI3 Perovskite with1803Power Conversion Efficiency beyond 21%. Advanced Materials 0, 1707143, (2018).